加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

揭秘:忆阻器的材料特性

(2011-06-09 10:36:18)
标签:

惠普

研究院

忆阻器

通道

x射线

纳米技术

芭芭拉分校

it

    Palo Alto, May 16, 2011 -- In a paper published this week in the journal Nanotechnology, researchers from HP Labs and the University of California, Santa Barbara, show in unprecedented detail how memristors work at the material level.
    帕洛阿尔托,2011年5月16日,本周的纳米技术杂志上刊登了一篇由HP研究院以及加州大学圣芭芭拉分校的研究者们撰写的论文,以前所未有的详细程度揭示了忆阻器是如何在材料层面工作的。

 

                揭秘:忆阻器的材料特性

 

    Representing a fourth basic passive circuit element, memristors have the ability to ‘remember’ the total electrical charge that passes through them. As a result, they could potentially underpin a new generation of high density, non-volatile memory chips and logic circuits that mimic biological synapses.
    作为第四种被动电路基本元件,忆阻器可以记住通过它们的电量。因此,它们具有打造下一代高密度、非易失存储芯片和模仿生物神经节的逻辑电路的潜力。

 

    Memristors were recognized only in theory until 2006, when HP Labs researchers first performed experiments to intentionally demonstrate their existence. While the electrical properties of these devices are now fairly well understood, very little has been known about how they actually undergo reversible changes in resistance.
    在2006年HP研究院的研究者们第一次有意识地证明其存在之前,忆阻器还只是作为概念出现。尽管这些元件的电子特性已经被充分了解,关于它们在实际中如何反转电阻还知之甚少。

 

    "It's been a real challenge to non-destructively study, at the nanoscale, the material changes that the devices undergo during operation," reports John Paul Strachan of HP’s nanoElectronic Research Group, and lead author of the paper.
    来自HP纳米电气研究组,同时也是该论文的主要作者的Strachan说:“在纳米级别上,对于元件如何在运行中导致的材料改变的非破坏性研究是一个真正的挑战。”

 

    While the memristors that they investigated were relatively simple films of titanium dioxide sandwiched between layers of metal, the HP/UC Santa Barbara team sought to map out the chemistry and structure of the minute conductive channel which is responsible for the switching in the device.
    HP/加州大学圣芭芭拉分校联合研究团队所研究的忆阻器是夹在金属层之间的二氧化钛薄片,他们希望能够观察到负责该元件电阻切换的详细导电通道的化学特性及结构。


 

    Electrical charge flowing through a memristor changes the resistance state of the device, but actually observing the corresponding material changes has been a challenge. Highly focused x-rays were used to probe the memristor non-destructively and a ~100 nm region with concentrated oxygen vacancies (right, shown in blue) where the memristive switching occurs was discovered. Surrounding this region a newly developed structural phase (red) was also found, which acted like a thermometer telling researchers where and how hot it became.
    通过忆阻器的电流可以改变它的电阻状态,但是在实际环境中观察随之而来的材料改变是一个挑战。高度聚焦的X射线被用来以非破坏性的方式探测忆阻器,研究人员们观察到一个约100纳米的区域集中了氧空位(右侧,以蓝色表示),忆阻切换正是在这里发生的。包围着这个区域的新近被发现的结构体(红色)则扮演了温度计的角色,可以告诉研究人员们忆阻切换在哪里发生,以及温度究竟能达到多少。

 

 

    The researchers used highly focused x-rays to localize the exact, one hundred nanometer channel where the resistance switching of memristors occurs.  That gave them a detailed insight into the chemistry and structure changes that happen when the device is operating.
    研究人员利用高度聚焦的X射线定位在精确到百分之一纳米的通道上,以观察忆阻器电阻的切换。他们可以从中观察到忆阻器运行时发生的化学和结构改变的详细信息。

 

 

    Additionally, says Strachan, "we now have a direct picture for the thermal profile which is highly localized around this channel during electrical operation, and is likely to play a large role in accelerating the physics driving the memristive behavior."
    此外,Strachan说:“我们现在对于电气操作中集中在这个通道上的热剖面有了直观的认识,看起来,它在推动产生忆阻行为的物理特性方面扮演了重要的角色。”

 

    A better understanding of the physical processes that occur within memristors at the nanoscale is essential if memristors are to realize their potential as the basis for innovations in computer memory and logic, the researchers believe.  Memristor-based devices could one day, for example, act like synapses inside computer circuits, mimicking the behavior of neurons in the human brain.
    研究人员们相信,如果要实现忆阻器作为计算机内存以及逻辑层面的创新基础,在纳米级别上对于忆阻器物理变化的深入了解非常重要。比如说,有一天,基于忆阻器的设备将在计算机电路中模仿人脑中的神经元,如同神经突起般运作。

 

    The team’s paper, The switching location of a bipolar memristor: Chemical, thermal, and structural mapping, appears as part of a special issue of Nanotechnology devoted to new research into non-volatile memory based on nanostructures.
    研究团队的这篇名为《一个两级忆阻器中的电阻切换位置:化学、热学以及结构描述》的论文,作为《纳米技术》杂志关于基于纳米结构非易失存储新研究的特刊中的一篇发表。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有