分类: 激励性薪酬福利管理 |
1.极差 最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,一般适用样本≤10,所以对企业岗位比较少的情况也可以使用。
2.离均差的平方和 由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
3.方差(S2) 由于离均差的平方和与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将离均差的平方和求平均值,这就是我们所说的方差成了评价离散度的较好指标。
我们知道,样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1(也可以这样表述:由于受离均差的总和等于零的限制,总有一个离均差受限制,所以引入自由度)。
4.标准差(S) 由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差,它恢复了原有的单位,克服了方差与平均数结合运用时的困难。
5.变异系数(CV) 标准差能很客观准确的反映一组数据的离散程度,但是对于不同的检目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。