加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

数学思想在计数与概率中应用

(2008-09-08 20:30:12)
标签:

教师

教育

校园

学生

学习

高考

数学复习

数学思想

计数

概率

应用

杂谈

计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的合理定势。

另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。

 

能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。

 

例1. 一次掷两颗骰子,求点数和恰为8这一事件A的概率。

 

分析:这实际上是一个等可能事件的概率。掷两个骰子出现的基本结果如下表: 

 

http://img1.qq.com/edu/pics/9972/9972260.jpg

解:表中基本结果36个,而点数为8的有5个,故:P(A)=-

 

评述:本题可归结为掷骰子问题,通过对掷骰子情况的研究得出各种概率数学模型,体现了数学建模的思想:

 

(1)、投掷一颗均匀的骰子,研究出现各种点的情况,这是等可能事件的概率,各点出现的概率为1/6。

 

(2)、同时投掷两颗均匀的骰子,研究出现各种点的情况,可列一表格或用坐标系表示。

 

(3)、同时投掷n颗均匀的骰子,研究出现各种点的情况,可看作n次独立事件的概率。

 

例2.同时掷四枚均匀硬币,求:

 

(1)恰有两枚正面朝上的概率;

 

(2)至少有两枚正面朝上的概率。

 

分析:因同时抛掷四枚硬币,可认为四次独立重复试验。

 

解: (1)问中可看作“4次重复试验中,恰有2次发生”的概率:

 

∴P4(2)=C42(-)2·(1--)2=-=-

 

(2)问中,可考虑对立事件“至多有一枚正面朝上”

 

故P=1-P4(0)-P4(1)=1-C40(-)0(1--)4-C41(-)1(1--)3=-

 

评述:研究各种掷硬币的情况,抽象出其数学本质,再利用概率知识解决,这就是数学建模的过程。这一问题可推广到n枚均匀硬币同时投掷的情况。

数学思想在计数与概率中应用

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有