零是无穷小吗?
(2018-05-27 19:33:36)
零是无穷小吗?
五年前,党的十八大之后,无穷小放飞互联网,基于紧致性定理的鲁宾逊无穷小首次与广大读者见面了。
无穷小是一个美学概念,不易琢磨,需要极其小心地定义。世界知名模型论专家J.Keisler给出了精确的数学定义。
袁萌
附:
无穷小(Infinitesimal)的数学定义 (此文发表于2013-06-21)
I. THE EXTENSI ON PRINCIPLE
(a) The real numbers form a subset of the hyperreal numbers, and the order relation x < y for the real numbers is a subset of the order relation for the hyperreal numbers.
(b) There is a hyperreal number that is greater than zero but less than every positive real number.
(c) For every real function f of one or more variables we are given a corresponding hyperreal function f* of the same number of variables. f* is called the natural extension of f .
Part (a) of the Extension Principle says that the real line is a part of the hyperreal line. To explain part (b) of the Extension Principle, we give a careful definition of an infinitesimal.
DEFINITION
A hyperreal number b is said to be:
positive infinitesimal if b is positive but less than every positive real number.
negative infinitesimal if b is negative but greater than every negative real number.
Infinitesimal if b is either positive infinitesimal, negative infinitesimal. or zero.
由以上所述,我们可以看出,无穷小只有在超实数系*R里面才有严格定义,只不过无穷小相对于传统实数而言更为接近零点而已。如果两个超实数相差一个无穷小,则称两者“无限接近”。......看到超实数,莱布尼兹终于微笑了,因为,这就是莱布尼兹所梦寐以求的东西。我们要为莱布尼兹的无穷小理论进行辩护,责无旁贷也。
无穷小是否存在?这是另一个问题。如果无穷小存在,那么,它就应当是这个样子。在1948年,28岁的数学家Edwin Hewitt(1920-1999)发明了超实数(Hyperreals),至今已经有60多年了。但是,我们国内的大学生们还不知道超实数是什么,那么,怎么做好”中国梦“呢?我们要做一个“超级梦”(Hyperdream)!
说明:以上英文原文摘自 J. Keisler《基础微积分》的原著。希望大家认真研读,透彻领会其中的基本思想。(全文完)
袁萌