数学学习方法(13)

标签:
数学学习复习方法 |
分类: 学好功课 |
一、灵活运用数形结合思想学习方法
题:某甲观测一飞行中的热气球,发现其方向一直维持在正前方,而仰角则以等速递减,已知此气球的高度维持不变,则气球( )
A、减速离某甲飞去
B、加速向某甲飞来
C、减速向某甲飞来
D、加速离甲飞去
上午做了几套高考(高考新闻,高考说吧)题,感觉上面这道题很有点意思,就拿来与朋友交流一下!从这道题本身来说,只有知道几个概念的都能懂的,但是做起来可能不是太容易的!
但是,要单凭想象可能是想不出来的,昨天看到广学老师写的关于高考数学解题的直觉思维的文章,很有感触!什么样的事物会给我们直觉思维的灵感呢?
到了高三最后这一紧要关头,在数学学科上要想有较大的提高,那对于数学思想是要烂熟于心的,如果看到上面了这道题,充分运用数形结合思想,那答案是迎刃而解的。 我们先来看看思想的解释:思想:s xin 思维活动的结果。属于理性认识。一般也称“观念”。人们的社会存在,决定人们的思想。一切根据和符合于客观事实的思想是正确的思想,它对客观事物的发展起促进作用;反之,则是错误的思想,它对客观事物的发展起阻碍作用。想法;念头:他早就有进大学深造的思想。进行思维活动:昨天下午,当代最伟大的哲学家停止思想了。
数学思想的含义应包含上述三种含义。常用数学思想有哪些呢?数形结合、化归、分类与整体、函数与方程等。其中数形结合思想是最基本也是最重要的。回头想一想我们从做时候就开始接触数形结合思想的呢?幼儿园!想一想我们是怎样识数的呢?解小学应用题时有没有用过数形结合的思想呢?到了初中,怎样进行学习数的大小比较的、绝对值的呢?以及后来所学的呢?不要到了高三最后紧要关头,就将这一基本的思想方法给忘记了!
灵活运用数形结合法帮助解题,将大大的帮助你提高解题的效率,从而获得高分!
二、三个细节容易失分学习方法
复习中,学生要提炼高考热点,查漏补缺,针对易错的地方加强练习,熟练掌握解决中低档题目的方法。在此,提醒考生,千万别排斥高频率的模拟测试,它能帮助学生掌握答题的节奏、技巧,稳定心理状态,提高动手能力。
回想这几年的高考情况,以下是考生容易失分的三个方面。
第一,步骤不完整。从这几年看,高考答案的步骤非常详细,而有些考生虽然会做,最后的结果也对,但是缺少中间步骤,这样很容易失分。
第二,审题不仔细。不少考生审题时,只看到了部分条件,例如f(x)≤0,有的学生就会当成f(x)<0,这样一来,全部错误。从往年的情况看,有的考生因为粗心丢掉了10多分。
第三,答题时间安排不合理。数学选择题做题时间一般是2分钟,曾有一位女生,学习成绩非常好,考试中遇到一道不会做的题,耽误了15分钟,题是做出来了,可当她看到别的同学已经开始做解答题时,慌了,结果考得一塌糊涂。
针对这些问题,特别提醒考生,考试中一定要规范答题,遇到不会做的题目时先放一放,此外就是一定要认真仔细,提高答题速度和准确性,要规范答题。
三、九大知识考点及其高考预测学习方法
1、高中数学新增内容命题走向
新增内容:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用。
命题走向:试卷尽量覆盖新增内容;难度控制与中学教改的深化同步,逐步提高要求;注意体现新增内容在解题中的独特功能。
(1)导数试题的三个层次
第一层次:导数的概念、求导的公式和求导的法则;
第二层次:导数的简单应用,包括求函数的极值、单调区间,证明函数的增减性等;
第三层次:综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等结合在一起。
(2)平面向量的考查要求
a.考查平面向量的性质和运算法则及基本运算技能。要求考生掌握平面向量的和、差、数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算。
b.考查向量的坐标表示,向量的线性运算。
c.和其他数学内容结合在一起,如可和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力。题目对基础知识和技能的考查一般由浅入深,入手不难,但要圆满完成解答,则需要严密的逻辑推理和准确的计算。
(3)概率与统计部分
基本题型:等可能事件概率题型、互斥事件有一个发生的概率题型、相互独立事件的概率题型、独立重复试验概率题型,以上四种与数字特征计算一起构成的综合题。
复习建议:牢固掌握基本概念;正确分析随机试验;熟悉常见概率模型;正确计算随机变量的数字特征。
2、高中数学的知识主干
函数的基础理论应用,不等式的求解、证明和综合应用,数列的基础知识和应用;三角函数和三角变换;直线与平面,平面与平面的位置关系;曲线方程的求解,直线、圆锥曲线的性质和位置关系。
3、传统主干知识的命题变化及基本走向
(1)函数、数列、不等式
a.函数考查的变化
函数中去掉了幂函数,指数方程、对数方程和不等式中去掉了“无理不等式的解法、指数不等式和对数不等式的解法”等内容,这类问题的命题热度将变冷,但仍有可能以等式或不等式的形式出现。
b.不等式与递归数列的综合题解决方法
化归为等差或等比数列问题解决;借助教学归纳法解决;推出通项公式解决;直接利用递推公式推断数列性质。
c.函数、数列、不等式命题基本走向:创造新情境,运用新形式,考查基本概念及其性质;函数具有抽象化趋势,即通过函数考查抽象能力;函数、数列、不等式的交汇与融合;利用导数研究函数性质,证明不等式;归纳法、数学归纳法的考查方式由主体转向局部。
(2)三角函数
结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用),考查三角函数性质的命题;与导数结合,考查三角函数性质及图象;以三角形为载体,考查三角变换能力,及正弦定理、余弦定理灵活运用能力;与向量结合,考查灵活运用知识能力。
(3)立体几何
由考查论证和计算为重点,转向既考查空间观念,又考查几何论证和计算;由以公式、定理为载体,转向对观察、实验、操作、设计等的适当关注;加大向量工具应用力度;改变设问方式。
(4)解析几何
a.运算量减少,对推理和论证的要求提高。
b.考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查:曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型。
c.注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来。
d.向量、导数与解析几何有机结合。
4、关注试题创新
(1)知识内容出新:可能表现为高观点题;避开热点问题、返璞归真。
a.高观点题指与高等数学相联系的问题,这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。高观点题的起点高,但落点低,也就是所谓的“高题低做”,即试题的设计来源于高等数学,但解决的方法是中学所学的初等数学知识,所以并没将高等数学引进高中教学的必要。考生不必惊慌,只要坦然面对,较易突破。
b.避开热点问题、返璞归真:回顾近年来的试题,那些最有冲击力的题,往往在我们的意料之外,而又在情理之中。
(2)试题形式创新:可能表现为:题目情景的创设、条件的呈现方式、设问的角度改变等题目的外在形式。
另请注意:研究性课题内容与高考(高考新闻,高考说吧)命题内容的关系、应用题的试题内容与试题形式。
(3)解题方法求新:指用新教材中的导数、向量方法解决旧问题。
5、高考数学命题展望
主干内容重点考:基础知识全面考,重点知识重点考,淡化特殊技巧。
新增知识加大考:考查力度及所占分数比例会超过课时比例,将新增知识与传统知识综合考是趋势。
思想方法更深入:考查与数学知识联系的基本方法、解决数学问题的科学方法。
突出思维能力考核:主要考查学生空间想象能力、学习能力、探究能力、应用能力和创新能力。
在知识重组上做文章:注意信息的重组及知识网络的交叉点。
运算能力有所提高:淡化繁琐、强调能力,提倡学生用简洁方法得出结论。
空间想象能力平稳过渡:形式不会大变,但将向量作为工具来解立体几何是趋势。
实践应用能力进一步加强:从实际问题中产生的应用题是真正的应用题,而试题只是构建一种模式的是主干应用题。
考查创新学习能力:学生能选择有效的方法和手段,要有自己的思路,创造性地解决问题。