反证法

标签:
教育 |
分类: 理论学习 |
反证法
1.反证法的概念。反证法是间接证明的一种基本方法,当我们需要证明一个判断为真时,先假设这个判断为假,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原判断应为真,这样的证明方法叫做反证法。反证法是演绎推理的一种,依据的是排中律,就是说两个互相矛盾的判断不可能同假,其中必有一真。
2.反证法的重要意义。如前所述,课程标准提出了培养学生推理能力和逻辑思维能力的要求。反证法是从另一个角度利用推理进行证明的思想方法,无疑也是培养学生推理能力的重要的思想方法。因此,它的重要性也是不言而喻的。另外,反证法虽然有一定难度,但是它对于培养学生思维的灵活性和解决问题的能力也有益处。
3.反证法的具体应用。反证法作为一种思想方法,不仅在数学中有很多应用,在日常生活和其他学科中也有应用。数学史上有比较经典的利用反证法证明的问题,如证明
是无理数,证明素数有无限多个等。在小学数学中,反证法的应用不多,在抽屉原理等问题中有一些应用。
4.反证法的教学。反证法在小学数学教学中应用较少,教师在教学时应注意以下几点。
第一,掌握它的基本原理和步骤是必要的。反证法采用的论证方式是演绎推理中的假言推理形式,依据的是排中律。它的证明步骤大致如下:(1)假设待证的结论为假、反论题为真;(2)从反论题出发,经过正确的逻辑推理,得出与已知条件或者定义、定理、公理、事实等矛盾;(3)根据排中律得出原结论成立。
第二,对反证法涉及的一些概念和词语应正确理解。在描述一对概念间的关系时,应注意怎样描述才是矛盾的。如是与不是、等于与不等于、大于与不大于、至少有一个与一个也没有等是相互矛盾的关系。有时候要注意容易出现错误的地方,如大于5与小于5、正数与负数等不是相互矛盾的关系,是一种对立关系。也就是说,两个矛盾的种概念外延之和等于属概念的外延,两个对立的概念的外延之和小于属概念的外延。大于与小于中间有等于、正数和负数中间有0。大于5与不大于(小于等于)5、正数与非正数(0和负数)是矛盾关系。
第三,对于学生来说,只需初步了解其方法。作为教师而言,要掌握反证法的基本原理、步骤和推理方法,以便在教学中把握反证法的科学性。学生通过简单的案例和运用反证法通俗易懂的推理过程,能够了解反证法的基本思想和数学方法的丰富性,培养思维的灵活性。