图形与几何主线分析

标签:
教育 |
图形与几何主线分析
一、基本内容与要求分析
(一)图形的性质
1.点、线、面、角
(1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等(参见例59)。
(2)会比较线段的长短,理解线段的和、差,以及线段中点的意义。
(3)掌握基本事实:两点确定一条直线。
(4)掌握基本事实:两点之间线段最短。
(5)理解两点间距离的意义,能度量两点间的距离。
(6)理解角的概念,能比较角的大小。
(7)认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差。
2.相交线与平行线
(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。
(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
(3)理解点到直线的距离的意义,能度量点到直线的距离。
(4)掌握基本事实:过一点有且只有一条直线与已知直线垂直。
(5)识别同位角、内错角、同旁内角。
(6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
(7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。
(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。
(9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。
(10)探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。
(11)了解平行于同一条直线的两条直线平行。
3.三角形
(1)理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。
(2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。
(3)理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
(4)掌握基本事实:两边及其夹角分别相等的两个三角形全等(参见例61)。
(5)掌握基本事实:两角及其夹边分别相等的两个三角形全等(参见例61)。
(6)掌握基本事实:三边分别相等的两个三角形全等。
(7)证明定理:两角及其中一组等角的对边分别相等的两个三角形全等。
(8)探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。
(9)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。
(10)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。
(11)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握有两个角互余的三角形是直角三角形。
(12)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
(13)探索并掌握判定直角三角形全等的“斜边、直角边”定理。
(14)了解三角形重心的概念。
4.四边形
(1)了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。
(2)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。
(3)探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(4)了解两条平行线之间距离的意义,能度量两条平行线之间的距离。
(5)探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形具有矩形和菱形的一切性质(参见例62)。
(6)探索并证明三角形的中位线定理。
5.圆
(1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。
(2)探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
(3)探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。
(4)知道三角形的内心和外心。
(5)了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线。
(6)探索并证明切线长定理:过圆外一点所画的圆的两条切线长相等(参见例63)。
(7)会计算圆的弧长、扇形的面积。
(8)了解正多边形的概念及正多边形与圆的关系。
6.尺规作图
(1)能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线。
(2)会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形。
(3)会利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。
(4)在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法。
7.定义、命题、定理
(1)通过具体实例,了解定义、命题、定理、推论的意义。
(2)结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。
(3)知道证明的意义和证明的必要性(参见例75),知道证明要合乎逻辑(参见例64),知道证明的过程可以有不同的表达形式,会综合法证明的格式。
(4)了解反例的作用,知道利用反例可以判断一个命题是错误的。
(5)通过实例体会反证法的含义。
(二)图形的变化
1.图形的轴对称
(1)通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分(参见例65)。
(2)能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形。
(3)了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质。
(4)认识并欣赏自然界和现实生活中的轴对称图形。
2.图形的旋转
(1)通过具体实例认识平面图形关于旋转中心的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等(参见例65)。
(2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
(3)探索线段、平行四边形、正多边形、圆的中心对称性质。
(4)认识并欣赏自然界和现实生活中的中心对称图形。
3.图形的平移
(1)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等(参见例65)。
(2)认识并欣赏平移在自然界和现实生活中的应用。
(3)运用图形的轴对称、旋转、平移进行图案设计。
4.图形的相似
(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似。了解相似多边形和相似比。
(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
(4)了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。
(5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。
(6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。
(7)会利用图形的相似解决一些简单的实际问题(参见例75)。
(8)利用相似的直角三角形,探索并认识锐角三角函数(sin
(9)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。
(10)能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
5.图形的投影
(1)通过丰富的实例,了解中心投影和平行投影的概念。
(2)会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。
(3)了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型。
(4)通过实例,了解上述视图与展开图在现实生活中的应用。
(三)图形与坐标
1.坐标与图形位置
(1)结合实例进一步体会用有序数对可以表示物体的位置。
(2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
(3)在实际问题中,能建立适当的直角坐标系,描述物体的位置(参见例66)。
(4)会写出矩形的顶点坐标,体会可以用坐标刻画一个简单图形。
(5)在平面上,能用方位角和距离刻画两个物体的相对位置(参见例67)。
2.坐标与图形运动
(1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
(2)在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。
(3)在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。
(4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。
(四)典型案例分析
例59
[说明]
例60
图15
[说明]
这个证明可以利用反证法完成,一方面使学生了解结论的证明,另一方面可以帮助学生了解反证法。如图15所示,我们希望证明:如果AB∥CD,那么∠1=∠2。假设∠1≠∠2,过点O作直线A′B′,使∠EOB′=∠2。根据“两条直线被第三条直线所截,如果同位角相等,那么两直线平行”这个基本事实,可得A′B′∥CD。这样,过点O就有两条直线AB,A′B′平行于CD,这与基本事实“过直线外一点有且仅有一条直线与这条直线平行”矛盾,说明∠1≠∠2的假设是不对的,于是有∠1=∠2。
图16-1
如图16-1所示,一个三角形由六个元素构成,即三条边和三个角,因此,两个三角形如果三条边和三个角分别相等,则这两个三角形全等。问题是,最少几个元素就可以确定三角形从而构成全等条件呢?
观察图16-1中的△ABC,如果对图中的边BC“视而不见”,这样,对∠B和∠C也就“视而不见”了(如图16-2),此时△ABC的形状和大小并不改变。这就是说,AB,AC两条边及它们的夹角确定了△ABC的形状和大小,于是可以推断,两边以及这两边的夹角可以确定一个三角形。因此,可以认同“两边及其夹角分别相等的两个三角形全等”这个基本事实。
另外,也可以用图形运动(叠合)的方法确认“两边及其夹角分别相等的两个三角形全等”这个结论。
对于基本事实“两角及其夹边分别相等的两个三角形全等”的直
可以进一步引导学生思考,为什么“三个角分别相等的两个三角形全等”不能成为基本事实。
对于以上事实的认可,也可以从六个元素中的一个出发,即由少到多进行考虑,通过画图探索出需要几个元素即可确定一个三角形。
例62
[说明]
分类的关键在于确定分类的标准,在不同的标准下可能会有不同的分类结果。一般来说,分类标准可以由粗到细,即由一个特征发展到多个特征(参见例21)。针对本问题把图形分为两类(其中一类可以是空的,在具体教学过程中不出现空集的概念)的标准可以考虑为:对边平行;对边平行且有一个角为直角;对边平行且四条边相等;对边平行、有一个角为直角、四条边相等。还可以通过对角线建立分类标准,等等。在具体教学过程中,可以启发学生想象,也可以做出实物让学生操作。
例63
[说明]
教学中可以参考安排如下的过程:
http://s12/mw690/003Od640gy6EOmXKbYncb&690
(2)证明结论的正确性。如图18-2,连接和
。因为
和
是⊙
的切线,所以
,即
和△
均为直角三角形。又因为
和
,所以△
和△
全等。于是有
,
。
这是通过演绎推理证明图形性质的过程。
由此可见,合情推理与演绎推理是相辅相成的两种推理形式,都是研究图形性质的有效工具。
上述证明过程没有采用形式化的三段论,但有利于初学者把握证明的条理和说理的逻辑。
证明:因为ABCD是平行四边形
所以
AB=CD
[说明]
例65
图20-1
[说明]
例66
(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);
(2)(1,3),(2,2),(4,2),(5,3);
(3)(1,4),(2,4),(2,5),(1,5),(1,4);
(4)(4,4),(5,4),(5,5),(4,5),(4,4);
(5)(3,3)。
[说明]
这个问题可以进一步扩展:把家乡的地图放在直角坐标系的第一象限内,然后等间隔地画出与坐标轴平行的两组平行线,一边用数字表示,一边用字母表示,然后让学生寻找自己熟悉的地点,并用数字和字母表示出该点。让学生理解,坐标的表示可以是多样的,坐标的核心是对应关系而不是具体表示形式。
例67
图21
二、重点问题分析
(一)空间观念
主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
空间观念在我们国家的以前教学大纲中就有这样的提法,但以前的课程中,用来支撑空间观念,或者培养学生空间观念的内容和素材却相对贫乏,所以从课程实施角度,对它的支撑显得很不够。但是这次课程标准的实验稿和修改稿,不仅把空间观念作为一个核心概念提出来,同时在内容的设置上、以及在教学的要求上,都有相应的支撑的它的素材。从课程的设计中就非常重视二维和三维图形的转换,因为这样的转换对发展学生的空间观念是非常有益的。包括展开与折叠、截一个几何体、视图与投影等内容,都可以属于这个范围。另外用运动的观点来看待这个图形,如轴对称、中心对称,通过变换的角度,我们想象这个图象,想象它的形状,想象它的变化,就是培养空间观念非常好的素材。同时,象图形与坐标、一个图形可以看成是由另一个图形做怎样的变化得到的,这些内容都是非常重要的。老师在这些内容的教学当中要重视这个过程,把培养空间观念作为我们的教学目标,给学生时间和空间,让他们去探究、让他们去交流、让他去表达,说他的感受,说他的想象,这样才能使培养学生的空间观念落到实处。
(三)推理能力
在日常的教学中,我们要让孩子们大胆地去发现、大胆地去归纳,大胆地去猜想。我们在课堂上通过动手操作,通过发现,通过你的灵机一动感悟到的东西,一定要大胆地说出来,敢于去猜,你才能迈出研究的第一步。这之后,再利用演绎的方法去从逻辑上去证明,也就有的放矢了。所以在咱们日常的教学过程当中,千万不要把合情推理作
为演绎推理的一个简短的前奏,很快过渡到所谓的“主旋律”了。
当然这样的例子不只一个,我们应该更多地去挖掘。
三、图形与几何的主线分析
第一个就是老师对于在初中阶段所掌握的所有图形,应该有一个整体的认识。
第一个角度是维数,觉得维数是空间观念的基础,所以脑子里要清楚三维的是什么样子,将来会学习是三个坐标,二维的,一维的。建议大家再开一点小学的问题,小学三维图形无非是柱锥台球,到高中还是柱锥台球,只不过认识的层次和深度不断加深,到大学重要的东西还是柱锥台球。
第二个是研究图形的性质。
从总的来讲是两类,一类是一个图形之间的,它的对象就是研究这个图
比如说通常所说的中心投影,将来会是摄影的基础,平行投影是会涉及到几何的会更广泛一点,所以这个是通过视图来支撑着对这样一个关系的认识。同时又是空间想象力,或者几何直观能力,或者空间观念的一个重要的载体。
展开对图形性质的证明。还有一种方法,就是用变换的手段来认识图形,有平移,轴对称,还有旋转。
到了高中还会继续学习,因此概括来讲,认识图形基本方法,一个是演绎的方法,一个是运动变换的方法,还有一个就是运用坐标的,
有序数对刻划的三种方法。当然,在这三种方法里面,可能在初中阶段,在不同的内容里面,各有侧重,希望老师也能够很好的把握好这几种方法。
在标准中强调用变换的角度,用运动的角度来看待图形,个人觉得,是几何课程的一次重大的突破,相信会沿着这样一个角度,不断的强化。因为从高中的课程和大学的课程以及数学研究的角度来看,欧式几何作为锻炼人思维是一个载体,但是在后面的学习中,它会不断的被削弱。
在这个方向上,还会发生变化。
因为几何已经不是它从所谓希腊文词汇反应过来的一个度量,它赋予一个内涵是方法的意思,而多样性的方法,是这次标准的研制和修改所遵循的一个基点。第一件事情,几何不等于欧式几何,是研究几何的方法是多样的,随着知识的不断的增长,研究图形的办法会不断的丰富,第二件事,就是重视运动,重视变换,让图形动起来,让能从图形中挖掘出更多对有好处的东西,这是强调第三个角度的一个基点。