人教五年级数学下册《分数的意义和性质》单元教材培训
(2019-03-06 15:46:23)人教五年级数学下册《数与代数》领域的教材培训
——第四单元《分数的意义和性质》
迎小王艳慧
各位领导老师大家下午好!今天我们要进行的是五年级下册的教材培训,涉及到数与代数领域的内容有三个单元:分别是第二单元的《因数与倍数》、第四单元的《分数的意义和性质》、第六单元的《分数的加减法》。
这三个单元在内容上存在的特点:首先概念很多,比如第二单元的因数、倍数、质数、合数、奇数、偶数;第四单元的分数、分数单位、真分数、假分数、带分数、公因数(互质数)、公倍数、约分(最简分数)、通分。所以概念教学,是个重点,很抽象,我们要做好概念间的联系与引导。其次就是与计算相关的内容。涉及到的是第四单元的约分、通分、分数和小数的互化(这里呢以概念为基准,掌握计算方法。);第六单元的同分母、异分母分数的加、减法、加减混合运算。(注重转化思想的培养,利用直观图,帮助学生理解算理。)
接下来,我选取了第四单元《分数的意义和性质》给大家做以简单说明和介绍。
一、单元教学目标
知识技能:
1.知道分数是怎么产生的,理解分数的意义,明确分数与除法的关系;认识真分数和假分数。
2.理解和掌握分数的基本性质;理解公因数与公倍数的概念,会求最大公因数与最小公倍数;能熟练地进行约分和通分,并会比较分数的大小。
3、会进行分数与小数的互化。
数学思考:
初步形成数感,渗透归纳思想、培养合情推理的能力,渗透数形结合的思想。
问题解决:
1、利用分数的意义以及分数与除法的关系,会解决实际问题。
2、能应用最大公因数与最小公倍数的知识,解决简单的实际问题。(铺砖问题、公交车相遇问题)
情感态度:激发学生学习数学的兴趣和内在动机,获得成功体验,增强学习数学的信心。
二、单元教材分析:
1、主要内容有: 分数的意义、真分数与假分数、分数的基本性质、约分、通分、分数和小数的互化。
2、教材编排特点:
(1)、从生活角度呈现分数产生的意义,从数学角度解决了整数除法除不尽的矛盾,也就是分数产生的必要性。(45页两幅插图)不管从哪个角度,最终要让孩子们理解到在测量、分东西或计算时,结果得不到整数时,需要用分数来表示。这是分数产生必要性。
(2)清晰地呈现了学习因数、倍数的用途。
教材中把公因数、最大公因数的内容安排在了约分之前;把公倍数、最小公倍数的内容安排在通分之前,将分数大小的比较放在通分之后。这样的安排让学生们能很清晰地明白学习因数和倍数的作用,学了就用,将知识紧密联系起来,既有利于整除知识的教学,又能体现知识的完整性。
(3)注重数感培养,突出概念本质。
如:带分数这一概念。因为分数运算中是不含带分数的,但是考虑到把大于1的假分数化成带分数,容易看出这个假分数在哪两个整数之间,便于比较大小,从而有利于数感的形成。
本单元的安排,充分培养了学生的数学抽象、数学运算、数感等数学核心素养。
3、本单元所处地位以及各内容之间的联系:
像分数是怎样产生的,理解分数的意义,明确分数与除法的关系,这是本单元新知,是以前面学完的《分数的初步认识》、《因数与倍数》为基础的。理解和掌握分数的基本性质,是本单元的新知,它是以学过的商的变化规律为基础的。而分数的基本性质又会为六年级上册学习比的基本性质打好基础。分数的基本性质和最小公倍数又是通分的基础。通分为第六单元的异分母分数加、减法奠定基础。分数与小数的互化,是以学过的小数与分数的联系为基础的,而分数与小数的互化也为六年级的百分数、分数和小数之间的互化作了知识孕伏。所以本单元知识还是起着举足轻重的作用。
4、教学建议:
按照教材内容的安排,在教学过程中我想给大家提出以下几点建议:(对照课本或教参)
第一部分:分数的产生和意义
(1)、大家看45页分数的产生,要注意结合插图引导学生看图,通过测量与分物,理解分数产生的背景和实际需要。通过学生实际参与,激发学生的兴趣。下边有两个空需要填,分别填1/2块、1/2包,在这呢如果孩子们将结果用小数表示时,也要给予肯定。(因为通常小数是表示具体的量的。)46页分数的意义,借助直观图理解单位“1”。 具体操作我会在教学设计中描述。
(2)、49页的分数与除法,例1把除法的意义和分数的意义进行了统一:把1个物体平均分成3份,用除法的意义列出除法算式为1÷3,根据分数的意义得到每份是1/3;为学习假分数以及把假分数化成整数或带分数做准备。例2是难点,把一些物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是3/4,在这儿可以用两种方式来理解:用操作或图示法,画一画、分一分。推理:先把1块月饼平均分给4人,每人分得1/4块,3块月饼平均分给4人,每人分得3个1/4块,也就是3/4块。最后根据例1和例2对分数与除法的关系进行了总结。让学生体会到分数与除法可以互逆,可看作同一种运算。进而对分数的意义进一步扩展,它既可以表示作为结果的一个数,也可以表示一种运算过程。50页例3,这类问题的安排 ,通过学生的对话明确解题思路:求一个数是另一个数的几倍或几分之几都是用除法解决。要注意引导“倍”和“几分之几”的关系。正着说是几分之几,反过来说就是几倍,用具体例子做体会。
第二部分:真分数和假分数
53页例1,先通过涂色表示分数,并说明分数单位。观察分数中分子和分母的大小,然后借助直观图把它们和1比较,再介绍真分数的概念及其特征。例2教学时可以仿照例1,要注意的是,这里的单位“1”是一个圆而不是所有圆的总体。习题的素材大都有数形结合的特点,大家在教学中要充分利用,充分建构概念。54页例3,把假分数化成整数或带分数,注意理解方法。也是为了培养学生对于分数的数感,借助直观图就很好理解。
第三部分:分数的基本性质
57页例1分数的基本性质,教学中要借助动手操作和直观图,合情推理、引发猜想,加以验证,最后总结。注意引导学生观察它们的分子、分母各是按照什么规律变化的,并与商不变的规律进行联系。例2是分数基本性质的应用。
第四部分:约分
60页例1:教材直接由找两个数公有的因数,还可以用集合的形式表示出因数、公因数,引出公因数、最大公因数的概念,从抽象到直观。例2:最大公因数的求法,要鼓励学生思考交流不同的方法。最后通过观察,找出公因数和最大公因数之间的关系:那就是所有的公因数都是最大公因数的因数。61页做一做”第3题做题后做出两类特殊数(两数倍数关系,两数互质)的最大公因数的求法。用分解质因数的方法求最大公因数,出现在“你知道吗”,可通过自学了解。62页例3:教材安排了实际问题,让学生在解决问题的过程中体会学习公因数,最大公因数的应用价值,可以借助直观图,进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题,也就是这个正方形地砖的边长必须是储藏室长和宽的公因数。边长最大是几分米?就是求长与宽的最大公因数。如果有时间还可以增加拓展,地砖边长最大时,要用多少块的问题。65页例4:是约分, 不再单独安排例题教学最简分数的概念,而是在约分的过程中认识。约分的依据是分数的基本性质,方法是多样的:可以逐步约分,也可直接用最大公因数约,教材最后给出了约分的简便写法,并给出最简分数的概念。(可结合判断题训练)
第五部分:通分(编排方式与约分相似,不再多说)
建议大家教学70页例3时注意积累都什么样类型的题目会用到求公倍数和最小公倍数的知识去解决。73页-74页例4、例5学完后重点归纳分数大小比较的三种情况:同分母的、同分子的、分子、分母都不同的。这三种情况的比较方法是怎样的。同时法意引导学生区别通分与约分:约分是对一个分数的运算,通分是对两个分数的运算。
第六部分:分数与小数的互化
77页例1:小数化分数。用小数和分数两种不同的方式表示同一个除法运算的结果,建立起两者的联系;利用小数的意义给出小数化分数的一般方法。一位小数的例子由教材给出范例,两、三位小数由自己类推。
例2:分数化小数。教材直接出要求,不再由比较大小的数学情境引出;分数化小数的方法多样:分母是10、100…的,利用小数的意义来化:分母不是10,100…的,利用分数与除法的关系,用分子除以分母,其中除不尽的可根据“四舍五入”法保留两位小数。
三、课时目标及教学设计
《分数的意义》内容是教材45页-47页
本课的教学目标:
知识技能:1.了解分数的产生,理解分数的意义;2.理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。
数学思考:在理解分数含义的过程中,渗透比较、数形结合等数学思想方法,培养学生的抽象概括能力。
问题解决:能准确找到单位“1”及分数单位。
情感态度:在实际的观察操作中,增强学生自信;在积极参与,主动交流过程中体会学习分数的价值,感悟生活需要数学。
教学重点:理解分数及分数单位的意义。
教学难点:理解单位“1”,认识分数单位。
学具:准备:一段绳子、圆片,正方形和长方形纸片,一盘香蕉图片,8个面包图片,一条线段图片。
教学过程:
一、活动引入
1、测量活动
师:指着黑板说,如果不给你尺子,你要怎样量出这块黑板的长度?(学生们可能会说:用绳子量)
师:是啊, 我们的祖先也想到了这种方法,下面找两位同学到前面来体验一下古人的测量工具和方法好吗?(请两位学生上前,用打好结的绳子测量) 我们数出了6段多,不足7段,剩下的不足一段时,要怎么记录呢? 引出分数(板书:分数)
师: 关于分数,三年级已学过,你能任意说出一个分数吗?(选择其中一个板书) 说各部分名称(分子、分母、分数线)
2、平均分的活动。(图片)
老师顺便出示图片:两个西红柿、一块月饼、一包饼干,要平均分给刚才这两位同学,怎么分?那每人分到__个西红柿,__块月饼,__包饼干?学生回答。
师:那现在谁来说说,什么时候我们会用到分数? (也就是在进行测量、分物或计算时,不能得到整数的结果,这时常用分数来表示。)
设计意图:通过亲自体验古人的测量以及平均分这两个活动,激发学生的参与热情,感知分数产生的必要,通过自己举例分数,让学生回忆分数的初步认识,为后面学习作好铺垫。通过两个操作活动,使学生感悟分数是适应客观需要而产生的,提高学习的积极性,促进对分数意义的理解。
二、探究新知
师:我们对1/4这个分数已经不陌生了。老师给大家准备了一些圆片、正方形纸、长方形纸 、线段图、香蕉图片、面包图片,大家可以动手折一折、画一画、圈一圈,用你喜欢的方式表示出1/4好吗?
师:表示完的可以和同桌先说一说你是怎么表示的?(同桌交流)
2、全班交流并将不同情况展示在黑板上。
(预设)生1:我把手中的圆纸片,折一折,画一画,涂出其中的一份,就是这个圆片的1/4。
生2:我用正方形纸片,通过对折再对折,,平均分成4份,其中的1份就是正方形纸片的1/4。在这呢老师顺势追问:都谁也用了正方形纸?你和他的折法一样吗?(正方形纸有4种分法,进行对照,问你们的都1/4一样吗?充分理解形状不一样,但是每份都是相等,都代表这个正方形的1/4。)
生3:出示线段图,把一条线段平均分成4份,其中的每1份就是这条线段的1/4。
生4: 一盘香蕉(出示图片,4根),每根香蕉是这把香蕉总根数的1/4 ,师可以顺势说说这里的1份代表1根 (多几人说)这是重点,有意识多说。
生5:(出示面包图)一盘面包,平均分成4份,每份是这8的面包的1/4,师可以顺势说说这里的每份有2个。
师:请同学们仔细观察,刚才我们所分的这些(正方形、线段、香蕉),有什么相同之处?不同之处?
生:相同的是平均分 。不同:有的是一个物体,有的是一些物体。
师:哪些是一个物体?(一个正方形、一个圆片、一条线段)哪些是一些物体?(一把香蕉、一盘面包)
师用手指着:像这样一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(板书)
师:在这些香蕉中,取两根,用分数表示,你会吗?取3根?
师:现在谁能说说什么叫分数。(2-3人说)
生:多找几个学生尝试归纳。注意找出关键词:单位“1”、平均分(板书)
师:在生活中,我们还可以把哪些东西看成单位“1”?
生:自由举例,师在过程中引导学生区分一个物体和一些物体,突破难点。
设计意图:借助直观图、通过折一折、涂一涂、圈一圈的动手操作,表示分数,体会平均分;在交流分享中,体会分数的意义。突破把一些物体看作一个整体这一难点。
3、完成练习做一做,然后自学分数单位。
在汇报过程体会分数单位就是分母分之一。充分理解分数单位后,再逐一说明所填写的分数的分数单位,以及有几个这样的分数单位。(这也要作为一个重点。)
4、同桌互举例子,砸实分数单位。
设计意图:通过练习并自学,充分理解分数单位;并且进一步归纳得出:平均分成的份数就是分数的分母,取的一份或几份就是分数的分子,加深对分数这一概念的理解;通过同桌互相举例找分数单位,进行及时强化。
三、巩固练习
1、练习十一的1、2、3、4题 分别从一个物体、一些物体作为单位1的基础练习。
2、5小题是利用分数的意义和整数除法来解答,属于重难点,也是考试的出题重点。
3、48页9题设计课开放的题目,用数形结合进一步理解分数的意义。
4、综合性知识 把一条线段平均分成5份,1份是它的( );4份是它的( )。
20个苹果,平均分成2份,每份是它的( ),平均分成5份,3份是它的( ),平均分成20份,8份是它的( ),平均分成40份,20份是它的( )。
设计意图:分层练习,充分体会一个物体、一些物体作为单位1时的不同,在比较练习中,进一步砸实本课重难点。利用开放性练习进一步理解分数、分数单位的概念。
四、全课小结。
这节课你有什么收获?学到了哪些知识?在研究分数的意义时,我们借助了什么方法?(直观图,数形结合的方法)