《四边形内角和》教学反思1
本节课是在学生已有知识经验基础上,设计了一系列探究活动,让学生经历观察、思考、推理、归纳的过程,体会从特殊到一般的探寻规律方法,教师在教学中力图体现以下两点思考。
1.经历“猜想+验证”,体会转化思想的运用。
在探究新知之初,教师鼓励学生猜想任意四边形的内角和,并动手验证。学生很快呈现的方法精彩而有丰富,在辨析的过程中,充分感受到转化的思想在解决问题中的作用。他们收获的不仅是数学知识,更重要的是习得了解决问题的策略和方法。
2.在算术的情境中,发展学生的代数思维。
教学从熟悉的生活情境引入,较好地激发了学生的探究欲望。在学会用转化的思想初步探索四边形内角和之后,教师组织学生继续探究五边形、六边形等的内角和,同时不断引导学生观察和发现:每次分割出的三角形个数与多边形边数之间的关系,并将这一关系符号化、一般化、结构化,从而概括出n边形的内角和计算公式。在探索新知的过程中,发展了学生的代数思维。
正如知名华人数学家、美国特拉华大学数学系和教育学院教授蔡金法说过:“帮助学生在小学阶段形成代数思维的习惯,是更有效减缓或消除日后他们对代数学习的抵制的方法”。如果我们能在平时的教学中,结合算术情境中相关联的素材渗透代数思维,一定能帮助学生积累丰富的代数学习经验,并为他们打通算术和代数思维的学习通道。

加载中…