《除得尽吗》教学设计
(2019-01-01 18:28:13)
标签:
教学设计 |
教学内容
北师大版小学五年级数学上册15-16页。
教学目标
认识无限小数、循环小数,会求循环小数的近似值。
经历自主探究和合作交流的过程,培养学生发现循环小数的本质特征并能用语言抽象概括的能力。
在探究发现的过程中,激发学生勇于思辨的精神,增强学习数学的兴趣和信心。
教学重点
认识循环小数,会用四舍五入法求循环小数的近似值。
教学难点
会正确表示循环小数,掌握余数和商的特点以及它们和被除数、除数之间的关系。
教具学具
教材中情境图制成的课件。
教学过程
一、创设情境,激发兴趣
1、师:动物王国将要进行一场有意义的爬行比赛,下面是蜘蛛和蜗牛训练的情形(课件出示教材主题图),请同学们认真观察主题图,从中能得到什么数学信息?
学生自主寻找数学信息:
蜘蛛3分钟爬行73米,蜗牛11分钟爬行9.4米。
2、根据以上信息你能提出什么数学问题?
预设:
生1:蜘蛛平均每分爬行多少米?
生2:蜗牛平均每分爬行多少米?
生3:谁爬得快?
......
师:下面我们就来研究大家所提出的问题。
设计意图:从学生感兴趣的动物故事比赛爬行前的训练引入,更贴近学生生活和知识经验,因为如果是正式比赛,要么时间一样,比爬行的路程;要么路程一样,比爬行的时间。不可能路程和时间都不一样进行比赛,这不符合实际生活!其目的是激发学生学习数学的兴趣,培养学生在情境中搜集数学信息并提出相关问题的能力,为后续的探究做好准备。
二、探索新知
1、大家觉得以上三个问题,哪一个最好解决?
预设:
生1:蜘蛛和蜗牛的速度这两个问题一样好解决,都可以利用路程/时间=速度分别进行计算,而谁爬行的快的问题是在解决这两个问题之后比较解决的。
生2 : 我认为,第三个问题最好解决!因为蜘蛛用的时间比蜗牛的短,而爬行的路程却比蜗牛多得多,所以蜘蛛爬的快!
设计意图:此环节的设计,一方面引导学生唤起对旧知的回忆,让学生进一步明确数量之间的关系,感知小数除法的意义;一方面,发展学生的数感。
2、师:蜘蛛和蜗牛的每分爬行的速度到底是多少呢?我们来算一算。
同桌比赛:一人计算蜘蛛的速度,一人计算蜗牛的速度,看看谁算的有准又快。
设计意图:通过同桌比赛的方式,激发学生计算的热情,学生能很快的投入到小数除法的竖式计算之中,也会很快发现其中的问题。
3、学生会发现怎么除也除不尽。师:除得尽吗?(板书主课题)为什么?余数有什么特点?商有什么特点?它们之间有什么联系吗?
预设:
除不尽,因为总有余数,而且余数是重复出现的,商也是重复出现的,并且商随着余数的重复出现而重复出现。
师进一步追问:商是从哪一位开始重复出现的?(十分位、百分位)它们属于小数商的哪一部分?(小数部分)重复出现的商是几个数字?(一个、两个)像这样的小数我们给它起个什么名?(循环小数)你们能归纳一下它的特征吗?
学生尝试归纳小结。
4、师引导学生小结:
设计意图:让学生在自主探究合作交流的基础上认识循环小数,把握它的本质特征,全面参与新知的发生、发展和形成过程,真正体验到探究的乐趣和数学的学科特点,感受数学的魅力。
5、介绍写法
师:你们知道循环小数还可以怎样表示吗?你想怎么简便地把它表示出来?(学生可以发挥想象力、创造力,想怎么表示就怎么表示)
师:请同学们阅读教材第16页“你知道吗”。
教师进一步说明:这是国际上通用的一种表示循环小数的简便方法,如果循环节是一个数字,就在这个数字上面点一个点;如果循环节是两个数字,就在这两个数字上各点一个点;如果循环节是几个数字,就在首和尾两个数字上各点一个点。
6、试着将下面的循环小数用这种方法表示出来。
24.333...,
7、求循环小数的近似值。
根据需要,可以用四舍五入法对循环小数取近似值。
学生试着将24.333...,
三、巩固练习
1、按要求把下面各数填在相应的()里。
0.777...
3.14159...
(1)有限小数(
(2)无限小数(
(3)循环小数(
2、我是公正的小法官。
(1)循环小数是无限小数。
(2)1.9999是循环小数。
(3)3.2828...
的循环节是28.
(4)50除以3约等于16.666......
3、写出下面循环小数的近似数。(保留三位小数)
2.9494...
4、3.643643...
四、全课总结
本节课你有什么收获?
教学反思: