加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

六年级下册《数学广角---鸽巢问题》教学反思

(2018-06-21 14:05:14)
分类: 原创教学

一、情境导入,初步感知

兴趣是最好的老师。在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。

二、活动中恰当引导,建立模型

采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。

三、通过练习,解释应用

适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。练习内容紧密联系生活,让学生体会数学来源于生活。练习由易到难,层层递进,符合学生的认知规律

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有