加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

NeuroImage:杨志等开发出神经影像数据挖掘的群组独立成分分析方法

(2012-07-23 11:46:06)
标签:

健康

分类: 学术动态

人脑是高度复杂的时空动力系统。基于神经影像数据,独立成分分析(ICA)作为一种数据驱动算法,被广泛应用于探索人脑系统的时空特性。在分析多被试数据时,现有ICA方法通常假设组内所有被试具有完全相同的脑活动成分。但是,当被试的脑活动模式的一致性不确定时,这一假设不尽合理。例如,在探索心理与精神障碍的脑机制时,尽管可以将具有相同临床(症状学)诊断的病人作为一组,但是并不确定他们的大脑功能活动模式是否一致。

中国科学院心理研究所行为科学重点实验室人脑功能连接组及其发展课题组的杨志副研究员基于ICA的数据驱动本质,强调指出:在应用ICA方法分析多被试数据时,应避免这一被试脑活动同质性假设。为解决此问题,他与同事基于前期开发的RAICAR方法,发展出在多被试神经影像数据中挖掘被试分组(亚组)的群组ICA方法——gRAICAR[1]。模拟数据显示,gRAICAR可以精确地揭示脑功能网络的个体间差异。进一步地,基于实际静息态功能磁共振成像数据,gRAICAR不仅能够估计每个脑功能网络的被试间的一致性,揭示被试间在脑功能上的相似关系,而且可以据此探测具有较高一致性的亚组。gRAICAR依据一个主要由楔前叶和后扣带皮层构成的脑功能网络,将被试分为两组。经验证,gRAICAR的分组与被试年龄特征高度一致。这一发现与该课题组最近一项关于功能连接组中心度的研究发现一致;有趣的是,gRAICAR同时检测到了一个默认网络成分,但是其在被试间表现出了高度的一致性。这些结果在从侧面反映 默认网络功能复杂性的同时,也突出地显示了gRAICAR方法的巨大优势。目前,这一现象正在被进一步深入研究。相关研究成果刊登在了NeuroImage上。

通过摈弃被试脑活动同质性假设,gRAICAR成为完全的数据驱动方法,为科研人员基于数据产生进一步的科学假设提供参考,将为深入挖掘多被试神经影像数据,为建立与心理精神相关脑功能疾病的神经影像标志提供有力工具,为开放式神经科学提供方法学支撑。

目前,本项研究已经在线发表于神经影像方法学期刊NeuroImage;同时,作为连接组计算系统http://lfcd.psych.ac.cn/ccs.html)的功能之一,该方法的软件包可在人脑功能连接组及其发展实验室网站下载。

来源:心理研究所

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有