加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

DID新进展:异质性多期DID估计的新方法-csdid

(2022-09-22 17:27:43)
标签:

stata

多期did估计

csdid

分类: Stata推文
全文阅读:https://www.lianxh.cn/news/10d7ae6efea16.html

目录

 


1. 背景简介

双重倍差法 (Difference-in-Differences,DID),是目前实证分析中用于识别因果关系的流行方法之一。标准的 DID 模型将样本分为两组:实验组和对照组;将时间分为两个阶段:政策发生前和政策发生后。所有的实验组样本都在同一时间点受到政策冲击。

随着 DID 方法的拓展,许多实证研究将其拓展为多期 DID,即实验组并非在同一时点遭受政策冲击。但是,自 2019 年来,不少学者纷纷指出这种多期 DID 有可能会产生有偏估计 (Athey and Imbens,2022;Baker et al.,2022;Goodman-Bacon,2021)。

其主要原因在于,多期 DID 估计的本质是多个不同处理效应的加权平均,权重可能存在为负的情形。在权重为负的情下,不同处理效应加权平均后得到的平均处理效应,可能会与真实的平均处理效应方向相反。Baker et al. (2021) 通过数据模拟发现,多期 DID 估计出来有偏误的处理效应甚至会与真实处理效应的符号相反。

为此,Callaway and Sant'Anna (2021) 提出了一种用于识别异质性多期 DID 的新方法,该新方法适用于以下三种情形:

  • 时间分为多期;
  • 实验组受到政策冲击的时间并非同一;
  • 实验组和对照组只有在控制了协变量之后才满足平行趋势假定。

下面本文将详细介绍 Callaway and Sant'Anna (2021) 提出的多期 DID 估计量,以及对应的 Stata 实操和 R 语言实操。


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有