加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

Stata:多元回归中控制其他因素不变的含义

(2022-08-28 08:53:14)
标签:

stata

多元回归

控制变量

分类: Stata推文
全文阅读:https://www.lianxh.cn/news/87b4bf66d120f.html

目录

 


在实证研究中,为讨论因变量和自变量之间的因果关系,常常需要加入控制变量来排除其他因素的干扰。例如,研究子女上学年限对工资的影响,线性回归模型为:

其中  是年工资 (元),核心解释变量  是子女上学年限 (年),控制变量  是母亲上学年限 (年)。控制母亲上学年限最直观的方式是联想早期回归分析实验中的控制变量法,保证所有样本的母亲上学年限均相同。这样,子女上学年限变化导致工资的波动可以归因为子女上学年限对工资因果效应。

然而,这种保持其他因素不变或者控制其他因素在相同水平的方法只适用于实验数据,在观测数据中却很难做到。在实验中,可以轻易控制某一变量在不同个体之间保持相同水平,而获取观测数据时,由于不能对获得的样本值进行限制,我们很少能奢侈地保持某些变量不变。

那么,在非实验条件下如何剔除控制变量的干扰呢?控制变量究竟是如何被 “控制” 的呢?


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有