初中阶段几种重要的数学思想方法(数形结合思想)
(2012-03-27 20:53:58)
标签:
杂谈 |
二、数形结合思想
1.数与形是数学中两个最古老的、也是最基本的研究对象,它们在一定条件下可以相互转化,如某些代数问题、三角问题往往都有几何背景,而借助其背景图形的性质,可使那些抽象的概念、复杂的数量关系变得直观,以便于探求解题思路或找到问题的结论.数形结合,不仅是一种重要的解题方法,而且也是一种重要的思维方法,因此它在数学中占有重要的地位.
2.数形结合的解题方法特点是具有直观性、灵活性、深刻性,并跨越各科的知识界限,有较强的综合性.在复习中加强这方面的训练,对巩固和加深有关数学知识的理解、打好基础、提高能力是非常重要的.
数形结合解题就是在解决与几何图形有关的问题时,将图形信息转换成代数的信息,利用数量特征,将其转化为代数问题;在解决与数量有关的问题时,根据数量的结构特征,构造出相应的几何图形,即化为几何问题。从而利用数形的辩证统一和各自的优势尽快地得到解题途径,这对提高分析和解决问题的能力将有极大的帮助.
数形结合的主要方法有:解析法、三角法、图象法等.
3.数形结合的主要途径:
(1)形转化为数:即用代数方法研究几何问题,这是解析几何的基本特点.
(2)数转化为形:即根据给出的“数式”的结构特点,构造出与之相应的几何图形,用几何方法解决代数问题.
(3)数形结合:即用形研究数,用数研究形,相互结合,使问题变得直观、简捷、思路易寻.
4、在运用数形结合时,要注意两点:
(1)“形”中觅“数”:很多数学问题,需要根据图形寻求数量关系,将几何问题代数化,以数助形,使问题获解.
(2)“数”上构“形”:很多数学问题,本身是代数方面的问题,但通过观察可发现它具有某种几何特征,由于这种几何特征可以发现数与形之间的新关系 ,从而将代数问题化为几何问题,使问题获解.
以上两者之间是相互联系的.例如在解析几何中,虽然研究的主要方面是用函数方法解决几何问题,但是由于我们在研究中得到某些代数表达式具有明显的几何意义,则可在确定合适的坐标系后获得几何解释,从而能借助几何方法加以解决.

加载中…