加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

世界十大数学家之六:莱布尼茨

(2012-07-17 13:26:57)
标签:

莱布尼茨

中国

微积分

牛顿

符号

教育

分类: 数学小知识



    戈特弗里德·威廉·凡·莱布尼茨,德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。然而,由于他创建了微积分,并精心设计了非常巧妙简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。

http://s1/middle/7733c96fgc500284f3940&690

  从幼年时代起,莱布尼茨就明显展露出一颗灿烂的思想明星的迹象。他13岁时就像其他孩子读小说一样轻松地阅读经院学者的艰深的论文了。他提出无穷小的微积分算法,并且他发表自己的成果比伊萨克·牛顿爵士将它的手稿付梓早三年,而后者宣称自己第一个做出了这项发现。

  1661年,15岁的莱布尼茨进入莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,他还抓紧时间学习哲学和科学。1663年5月,他以《论个体原则方面的形而上学争论》一文获学士学位。这期间莱布尼茨还广泛阅读了培根、开普勒、伽利略等人的著作,并对他们的著述进行深入的思考和评价。在听了教授讲授的欧几里得的《几何原本》的课程后,莱布尼茨对数学产生了浓厚的兴趣。

    莱布尼茨发表了他的第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学的才华,后来的一系列工作使他成为数理逻辑的创始人。

  17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。

  微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼茨在1673—1676年间也发表了微积分思想的论著。  

  莱布尼茨和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼茨大体上完成的,但不是由他们发明的”。

  然而关于微积分创立的优先权,在数学史上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼茨,但莱布尼茨成果的发表则早于牛顿。

  莱布尼茨1684年10月在《教师学报》上发表的论文《一种求极大极小的奇妙类型的计算》,是最早的微积分文献。这篇仅有六页的论文,内容并不丰富,说理也颇含糊,但却有着划时代的意义。

  牛顿在三年后,即1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家莱布尼茨的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外”(但在第三版及以后再版时,这段话被删掉了)。

  因此,后来人们公认牛顿和莱布尼茨是各自独立地创建微积分的。

  牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。

  莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。

   莱布尼茨在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。

  莱布尼茨曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼茨证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论,此外,莱布尼茨还创立了符号逻辑学的基本概念。

  莱布尼兹是数字史上最伟大的符号学者之一,堪称符号大师。 他曾说:“要发明, 就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动”,正象印度——阿拉伯的数学促进了算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。欧洲大陆的数学得以迅速发展, 莱布尼兹的巧妙符号功不可没.。除积分、微分符号外, 他创设的符号还有商“a/b”, 比“a:b”,相似“∽”, 全等“≌”、并“∪”、“交“ ”以及函数和行列式等符号。

    1673年莱布尼茨特地到巴黎去制造了一个能进行加、减、乘、除及开方运算的计算机。这是继帕斯卡加法机后,计算工具的又一进步。帕斯卡逝世后,莱布尼茨发现了一篇由帕斯卡亲自撰写的“加法器”论文,勾起了他强烈的发明欲望,决心把这种机器的功能扩大为乘除运算。莱布尼茨早年历经坎坷。在获得了一次出使法国的机会后,为实现制造计算机的夙愿创造了契机。

  在巴黎, 莱布尼茨聘请到一些著名机械专家和能工巧匠协助工作,终于在1674年造出一台更完善乘法机的机械计算机。莱布尼茨发明的机器叫“乘法器” ,约1米长,内部安装了一系列齿轮机构,除了体积较大之外,基本原理继承于帕斯卡。不过,莱布尼茨为计算机增添了一种名叫“步进轮”的装置。步进轮是一个有9个齿的长圆柱体,9个齿依次分布于圆柱表面;旁边另有个小齿轮可以沿着轴向移动,以便逐次与步进轮啮合。每当小齿轮转动一圈,步进轮可根据它与小齿轮啮合的齿数,分别转动1/10、2/10圈……,直到9/10圈,这样一来,它就能够连续重复地做加减法,在转动手柄的过程中,使这种重复加减转变为乘除运算。

  莱布尼茨对计算机的贡献不仅在于乘法器,公元1700年左右,莱布尼茨从一位友人送给他的中国“易图”(八卦)里受到启发,最终悟出了二进制数之真谛。虽然莱布尼茨的乘法器仍然采用十进制,但他率先为计算机的设计,系统提出了二进制的运算法则,为计算机的现代发展奠定了坚实的基础。 http://s15/middle/7733c96fg7a199e185f2e&690

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有