加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

有关数学命题的逻辑知识

(2022-07-22 17:19:42)


1.掌握命题四种形式之间的逻辑关系

为了研究数学命题的条件和结论的逻辑联系,常把一个命题的条件和结论换位,或变为它们的否定形式,这样就可以得到命题的四种形式,即原命题、逆命题、否命题和逆否命题。对互为逆否的两个命题,它们具有同真同假的性质,此特性称为逆否命题的等效原理。因此,原命题与逆否命题、逆命题和否命题具有同真同假的关系。在数学学习中,为了考察一个数学命题的真实性,可以转换为考察它的逆否命题的真实性。比如在某节课上,任课教师引导学生学习了对称图形的性质,即“如果两个点是对称图形的对称点,那么这两个点到对称轴的距离相等。”但在课堂练习环节,在判断哪些点为对称点时,学生认为“因为M和N到对称轴的距离相等,所以M和N是对称点”,教师进行了肯定,之后学生都据此进行判断。这里师生所犯的错误,即是利用了性质命题的逆命题进行判断,但在这里原命题与逆命题并不等价。

2.明晰命题条件和结论之间的逻辑关系

数学命题常常写成“若P则Q”的形式,其中“若P”部分叫做命题的条件,“则Q”部分叫做命题的结论。根据命题条件P对结论Q所起的作用,可以把命题的条件分为以下四种情况,即充分非必要条件、必要非充分条件、充分必要条件、既非充分又非必要条件。命题的条件和结论之间的逻辑关系,与该命题及其逆命题、否命题和逆否命题的真假,显然存在紧密联系。例如在上述案例中,“两个点对称”只是“距离相等”的充分非必要条件,若原命题的条件和结论满足这样的逻辑关系,则该原命题的逆命题一定不成立。3.明确性质定理和判定定理之间的差异性质定理是由概念或公理得到的定理,讨论某个概念的时候,就包含了它的所有性质,所以性质定理的主要功能是描述特征。断定定理是判断所讨论的某事物是否符合某个概念或公理的定理,所以判断定理的主要功能是判断结论。性质定理和判定定理具有互逆的特征,但两者并不一定是互逆的命题。概念本身既是判定定理也是性质定理,且这两个定理是互逆命题。比如平行线的概念,我们可以直接用它来判断两直线平行,也可以根据两直线平行知道它们位于同一平面内且没有交点。从命题的条件和结论的关系来看,性质定理阐述了一个数学研究对象所具有的重要性质,其作用是揭示这个研究对象的某个特征,性质定理给出了结论成立的必要条件;判定定理阐述了结论成立的依据,判定定理给出了结论成立的充分条件。区分一个定理是判定定理还是性质定理,关键是看该定理阐述了结论成立的依据,还是揭示了一个研究对象的某个特征,若定理阐述了结论成立的依据,则是判定定理,否则就是性质定理了。在小学数学教学中,不清楚性质定理和判定定理的关系,教学就会变得盲目,甚至导致逻辑错误的发生。比如教学三角形的性质“任意三角形的两边之和大于第三边”时,有的教师通过让学生用小木棒来摆一摆,最后发现“若两个短的小木棒大于最长的小木棒,则可构成三角形”。这里就把三角形性质的学习,异化成了三角形判定的学习了。要学习三角形的性质,要先给出三角形,再根据生活经验,知道走直线比走折线要近,由此得出三角形的性质,其本质上依据的是数学公理“两点之间线段最短”。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有