加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

掌握有关数学概念的逻辑知识

(2022-07-22 17:18:45)


1.科学把握数学概念的逻辑定义

在人类的认识过程中,经过抽象形成新概念,由此压缩和简化了语言,加快了思维速度和深度。一个概念引入之后,就要借助语言,将其加以明确、固定和传递,这就要给概念下定义。对数学概念下定义,其基本方式是“种差+属概念”,即把某一概念包含在它的属概念中,并揭示它与同一属概念下其他种概念之间的差别。比如以四边形为属概念,可以分别对平行四边形和梯形下定义。在对概念下定义时,不能循环定义,比如“用两直线垂直来定义直角,又用两直线成直角来定义垂直”,等等。需要注意的是,尽管“种差+属概念”是对数学概念下定义的基本方式,但对小学数学来说并非理想的定义方式,因为小学数学学多采用的是从特殊到一般的方式,因此许多数学概念无法严格按照“种差+属概念”的方式定义。比如在小学教材中先教长方形,后教平行四边形,无法以平行四边形来定义长方形。正因此,小学数学教材中的不少概念最初都没有严格定义,只是通过描述性方法来让学生认识数学概念的特征。

2.明确数学概念与定义的逻辑关系

数学概念不同于数学定义。数学概念是从数和形两方面揭示客观事物本质属性的思维产物,它反映了数学概念的内容;数学定义是对数学概念的语言表达,它是数学概念的外壳,反映了数学概念的形式。对同一个数学概念,可以有不同的定义方式。比如对平行四边形,既可以定义为“两组对边分别平行的四边形”,也可以定义为“一组对边平行且相等的四边形”,这主要取决于采用哪种定义,更容易凸显出对象的本质,或更容易被学生理解和接受。当然,这些定义之间是相互等价的。需要注意的是,由于概念的定义具有人为性,因此定义方式不当,便难以反映出概念的本质属性。比如,在小学把“角”定义为“具有公共端点的两条射线组成的图形”,这并未反映出角的本质,因为角的本质并非体现在可见的“图形”上,而是体现在不可见的“张口大小”上。

3.正确认识数学概念的逻辑分类

如果将一个概念的外延集,按照某一属性分成若干个子集,也就是将一个属概念划分为若干个种概念,这就是明确概念外延的方法——分类。被分的属概念称为划分的母项,分得的若干种概念称为划分的子项,所依据的属性称为划分的标准[1]。通过概念的分类,可以使有关的概念系统和完整,同时使被分类的概念的外延更清楚、深刻和具体。但对概念分类时应注意一些问题,比如每次分类只能依据一个标准、分类要不重不漏、不能越级进行分类等。在小学数学教学中,经常有教师会问:菱形是平行四边形吗?正方形是长方形吗?平行四边形是梯形吗?圆是扇形吗?等等。这里就涉及到对概念的逻辑分类问题。概念的逻辑分类必须基于概念的定义。比如在教材中,将正方形定义为一种特殊的长方形,菱形定义为一种特殊的平行四边形,因此正方形也是长方形,菱形也是平行四边形,两者之间是包含关系。但平行四边形并不是用梯形作为属概念来定义的,平行四边形与梯形均是把四边形作为属概念来定义的,因此两者之间是并立关系,把平行四边形当作特殊梯形是不恰当的。至于圆是不是扇形,单从扇形定义无法判别的话,则通常采用约定的方式,即约定一类对象中的退化情形是否属于该类,这里并不涉及正确与否的科学性问题,仅仅是一种约定俗成的人为规定。因此对这类问题,必须具体问题具体分析,并无统一的确定答案。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有