分数混合运算(附练习课)

(3)分数混合运算
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。
教学难点:明确混合运算的顺序。
教学准备:课件
教学过程:
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×5
二、新授
1、教学例4
(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。
(2)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m m
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
8 ―4
观察,这道题目中有哪几种运算?整数四则混合运算的运算顺序,适用于分数吗?学生独立计算,师巡视指导并作订正。
2、计算÷(
+
)×15
(1)说说运算顺序,独立计算。
(2)如果改写成÷[(
+
)×15]又该怎样计算?
②再算中括号里的;
③最后算÷13
÷[(
+
)×15]
= ÷[
×15]
÷13
=
3、巩固练习:P34“做一做”
要求:让学生说一说,上面的题目的运算顺序各是什么,然后进行计算。
本练习的教学安排:学生先独立计算,然后交流各自的算法,对比分步计算的先把除法转化为乘法再一次性约分这两种不同的解法,哪一种更简便些?鼓励学生以后在计算中可以根据题目的特点灵活选用恰当的方法进行计算;然后再让学生计算第三列的两个小题,此两小题由学生找出运算顺序之后独立计算,教师指导有困难的学生。最后让学生说一说,你在计算中是如何来提高计算的正确率的?
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:(多找几个学生来说自己心里的想法,寻找出最好的解题策略后再让学生进行计算。前三题提倡学生选择统一成乘法的方法进行计算。)
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。
(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷×
;B、可以先求装完的
有多少千克,综合算式是240×
÷
。
四、布置作业
五、板书设计:
例4 ―4
―4
教学后记:
练习课
练习目标:
1、进一步掌握分数除法的计算方法,能够正确迅速地计算两、三步计算的分数四则运算式题,提高分数四则运算的能力。
2、体会数学与生活的联系,提高学生综合运用知识解决问题的能力,能运用分数的知识解决一些实际问题。
教学准备:课件
练习过程:
一、基本练习:
1、判断正误:
①÷5=
×5(
②4分米的等于5分米的
。(
③两数相除,商一定大于被除数。(
1、
÷10
÷
÷
×
×
学生计算后订正时,着重评讲第5小题至第7小题的解法,第5、6小题让学生说一说写出计算过程前是怎样想的,即0.375和0.6是怎样处理的?第7小题可以分步计算也可以运用乘法分配律进行计算。
2、
5x
x=
=
=12
订正时让学生说明解题依据。
二、深入练习:
1、选择正确答案的序号填在括号里:
①一根绳子剪去3米正好是,这根绳子原来的长度是多少米?(
A
②与12÷相等的式子是:( )
A
2、一盏60瓦的灯1小时耗电千瓦时,某个传达室除了一盏60瓦的灯外,没别的电器。这个传达室上个月的用电量是6千瓦时,这盏灯上个月共使用多少时间?
(此题中的60瓦是没有用的条件,可能会影响少数学生的正确列式,这里在学生审题之后指名分析已知条件和问题的关系,让学生明白列式中不需要这个条件。)
3、
(让学生先计算,再比较——你有什么发现?引导学生弄清楚:其原因是、
的倒数与
的积正好是1。也就是除以
、
再乘上
,实际效果相当于除以或乘上1。)
三、自主练习:
1、某种手机的自动化生产线在手机板上插入每个零件的时间仅为秒。3分钟可以插入多少个零件?
2、每次吃半片,每天吃3次,这盒药共12片,可以吃几天?
四、思维体操:
1、一根绳子每次剪去它的,一共剪了4次,最后下这根绳子的几分之几?
2、用汽车运一堆货物,每天运这堆货物的,几天可以运完?每天运这堆货物的
,几天可以运完?
五、策略说明:让全体学生都有较充分的练习机会,在这个过程中检验、评价了分数除法的认知结果。
2、解决问题
(1)已知一个数的几分之几是多少求这个数的应用题
教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重点:
教学:难点:
教学准备:课件
教学过程:
一、复习
1、出示复习题:
根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的
,六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×=体内水分的重量
4、指名口头列式计算。
二、新授
1、教学例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。 =体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
χ=28
(5)启发学生应用算术解来解答应用题。
(根据数量关系式:小明的体重×=体内水分的重量,
反过来,体内水分的重量÷=小明的体重)
28÷=
2、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸:
小明:
爸爸的体重×=小明的体重
①方程解:解:设爸爸的体重是χ千克。 =75(千克)
χ=35
3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、练习
1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)
2、练习十第6题
(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)
四、总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
一、
例1(1)解:设小明的体重是χ千克。
χ=28
χ=35
28÷=35(千克)
=75(千克)
答:略
教学后记: