【必修2】DNA复制有时需要DNA连接酶

标签:
教育 |
分类: 【必修二】 |
http://s14/mw690/70c70f30gceadc9a9739d&690
http://s3/mw690/70c70f30gceadca1a2092&690
http://s10/mw690/70c70f30gceadd879c8cb&690
http://s13/mw690/70c70f30gceadd496fb9c&690
http://s12/mw690/70c70f30gceadcb4372fb&690
DNA复制的基本机理 DNA由两条螺旋的多核苷酸链组成,两条链的碱基通过A:T和G:C之间的氢键联结在一起。在复制过程中首先两条链间的氢键破裂并使双链解旋和分开,然后以每条链为模板,按碱基互补配对原则(A:T,G:C),由DNA聚合酶催化合成新的互补链,结果由一条链成为互补的两条链,这样新形成的两个DNA分子与原来的DNA分子的碱基序列完全相同。在此过程中,每个子代DNA的一条链来自亲代DNA,另一条链则是新合成的。这种复制方式称此过程中,每个子代DNA的一条链来自亲代的DNA,另一条链则是新合成的。这种复制方式称为半保留复制(semi conservation replication)。 http://www.china001.com/ifile.php?xname=PPDDMV0&fname=0_1222342654.gif 1958年Meselson和Stahl的实验首次有力地支持了半保留复制方式。他们先将大肠杆菌放在15NH4C1培养基中生长15代,使几乎所有的DNA都被15N标记后,再将细菌移到只含有14NH4C1的培养基中培养。随后,在不同的时间取出样品,用十二烷硫酸钠(SDS)裂解细胞后,将裂解液放在CsC1溶液中进行密度梯度离心(140000g,20小时)。离心结束后,从管底到管口,溶液密度分布从高到低形成密度梯度。DNA分子就停留在与其相当的CsC1密度处,在紫外光下可以看到形成的区带。14N-DNA分子密度较轻(1.7g/cm3),停留在离管口这较近的位置;15N-DNA密度较大停留在较低的位置上。当含有15N-DNA的细胞在14NH4C1培养液中培养一代后,只有一条区带介于14N-DNA与15N-DNA之间,这时在15N-DNA区已没有吸收带,说明这时的DNA一条链来自15N-DNA,另一条链为新合成的含有14N的新链。培养两代后则在14N-DNA区又出现一条带。在14NH4C1中培养的时间愈久,14N-DNA区带愈强,而14N-15NDNA区带逐渐减弱,但始终未出现其他新的区带。按照半保留复制方式培养两代,只能出现14N-15NDNA两种分子,而且随着代数的增加14N-DNA逐渐增加。Meselson和Stahl的实验完全证实了保留复制的设想。 复制起点和复制子
近年来,分子遗传学又克隆分析沙门氏杆菌(Salmonellatypbimurinm),产气肠杆菌(Erterobacteraerogers),肺炎克氏杆菌(Klebsiellapneumnonia)等许多细菌的ori区,发现它们在结构上相似,在核苷酸序列上有相当的保守性,而且在分类关系上愈是接近的细菌之间其同源性愈高,这些反映了DNA复制起点的重要性。 DNA复制的特点 DNA复制的最主要特点是半保留复制,另外,它还是半不连续复制(Semi-ondisctinuous replication)。DNA双螺旋的两条链是反向平行的,因此,在复制起点处两条DNA链解开成单链时,一条是5'→3'方向,另一条是3'→5'方向。以这两条链为模板时,新生链延伸方向一条为3'→5',另一条为5'→3'。但生物细胞内所有催化DNA聚合酶都只能催化5'→3'延伸,这是一个矛盾。冈崎片段(Okaxaki fragments)的发现使这个矛盾得以解决。在复制起点两条链解开形成复制泡(replication bubbles),DNA向两侧复制形成两个复制叉(replication forks)。以复制叉移动的方向为基准,一条模板链是3'→5',以此为模板而进行的新生DNA链的合成沿5'→3'方向连续进行,这条链称为前导链(leading strand)。另一条模板链的方向为5'→'3',以此为模板的DNA合成也是沿5'→3'方向进行,但与复制叉前进的方向相反,而且是分段,不连续合成的,这条链称为滞后链(lagging strand),合成的片段即为冈崎片段。这些冈崎片段以后由DNA连接酶连成完整的DNA链。这种前导链的连续复制和滞后链的不连续复制在生物是普遍存在的,称为DNA合成的半不连续复制。 转载自:http://www.china001.com/show_hdr.php?xname=PPDDMV0&dname=BPBBR31&xpos=33 |