伺服系统中位置环与电子齿轮的设计原理

标签:
s7200工控老鬼启程plc培训深圳plc培训 |
分类: 电气技术 |
伺服系统中位置环与电子齿轮的设计原理
本文分析了伺服系统中位置环和电子齿轮的工作原理,同时介绍了一种位置环和电子齿轮的数字实现方法。最后通过实验验证了该设计的可行性。
1 位置环的设计
作为伺服定位系统,在定位控制时,必须满足以下3方面的要求:
——定位精度,要求系统稳态误差为零;
——定位速度,要求系统有尽可能高的动态响应速度;
——要求系统位置响应无超调。
在实际应用中位置环通常设计成比例控制环节,通过调节比例增益,可以保证系统对位置响应的无超调,但通常这样会降低系统的动态响应速度。另外,为了使伺服系统获得高的定位精度,通常要求上位控制器对给定位置和实际位置进行误差的累计,并且要求以一定的控制算法进行补偿。另外一种方法是把位置环设计成比例积分环节,通过对位置误差的积分来保证系统的定位精度,这使上位控制器免除了对位置误差的累计,降低了控制复杂度。但这和采用比例调节的位置控制器一样,在位置响应无超调的同时,降低了系统的动态响应性能。本文把位置环设计成比例控制器,并且通过一个误差累加器对位置误差进行累计,从而保证定位精度,同时通过分析位置环的闭环传递函数来说明比例系数的取值。
图1是位置伺服系统的控制框图,图中R(s)代表相应的指令脉冲输入,C(s)代表电机相应转过的位置。其中当速度调节器采用PI控制时,在位置环的截止频率远小于速度环的截至频率时,速度环的闭环传递函数可以等效为一个惯性环节,即G2(s)=Kv/(Tvs+1),电机等效为一个积分环节,即G3(s)=Km/s。下面先来分析位置环设计成比例控制时的情况,此时G1(s)=Kc,则系统的闭环传递函数为
(1)式中:K=KcKvKm。
图1 位置伺服系统控制框图
(2)
2 位置环的软件实现
位置调节器相当于一个带比例增益的累加器,对输出脉冲的误差进行累加,具体的算法如下:
R(KT)=KcΔS=Kc〔DT3(iT)Kg-DT2(iT)〕(3)
式中:ΔS为累计的误差脉冲个数;
T为采样周期;
DT3为每个采样周期内获得的指令脉冲个数;
Kg为电子齿轮系数;
DT2为每个采样周期内反馈脉冲的个数。
溢出脉冲控制器对误差ΔS进行溢出判断,这里考虑到DSP字长的位数(字长为16位),当误差值ΔS>214时即为溢出,此时应设定相应的滞留脉冲控制器,一旦出现脉冲溢出现象,便控制位置环输出最大值,即给定最高转速。位置环的输出经过速度限幅后进入速度控制器。
当伺服系统的跟踪速度由输入脉冲的频率决定时,误差ΔS的值为一定值,此时输入脉冲和反馈脉冲的动态平衡方程如下:DT3(KT)Kg=DT2(KT)(4)
当输入脉冲的频率不断变化时,则伺服系统的跟踪速度不断变换,此时误差ΔS的值不断变化,并且最后把误差ΔS里的滞留脉冲全部输出,从而实现无误差定位。
3 电子齿轮的设计
3.1 电子齿轮的原理
通常在采用软件实现电子齿轮时可以设置两个比例系数,即
Kg=spdt1/spdt2(7)则式(6)变为
ΔPgspdt1=ΔPfspdt2(8)
式中:spdt1可以看作是指令脉冲的电子齿轮系数,而spdt2可看作是反馈脉冲的电子齿轮系数。
为了更加详细地说明电子齿轮的用途,下面将分两种情况来分析.
3.1.1 对指令脉冲频率的跟踪
通过设置两个电子齿轮系数,可以在同一个输入脉冲频率下获得不同的电机稳定转速。另外,输入的最高脉冲频率不能超过DSP识别的范围,这里考虑DSP在读取电平值时,该电平至少需要维持2个机器周期的时间,因此最大的输入脉冲频率为:finmax=MHz=5MHz
3.1.2 对指令脉冲个数的跟踪