加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

41、4-26 抽屉原理例3

(2016-04-25 08:52:10)
标签:

教案

分类: 15-16第二学期六年级数学教案

抽屉原理例3

教学目标:

【知识与技能目标】

1.通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。

2.体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。

【过程与方法目标】

在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力。

2.同时积累数学活动的经验与方法,进一步理解“抽屉原理”。

【情感与态度目标】

在灵活应用中,感受数学的魅力。

教学准备:

一个盒子、4个红球和4个蓝球为一份,准备这样的教、学具若干份。

教学过程:

一、创设情境,猜想验证

1.猜一猜,摸一摸。

(出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)

师:同学们,猜一猜老师在盒子里放了什么?

(请一个同学到盒子里摸一摸,并摸出一个给大家看)

师:老师的盒子里有同样大小的红球和蓝球各4个,如果这位同学再摸一个,可能是什么颜色的?

师:如果老师想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?

2.想一想,摸一摸。

请学生独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。在这个过程中,教师要加强巡视,要注意引导学生思考本题与前面所讲的抽屉原理有没有联系,如果有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。

学生可能会猜测“只摸2个球能保证这2个球同色”;

可能会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”

对于前一种想法,只要举出一个反例就可以推翻这种猜测,如两个球正好是一红一蓝时,就不能满足条件。

二、观察比较,分析推理

1.说一说,在比较中初步感知。

请一个小组派代表概括地汇报探究的过程与结果。其他小组有不同想法可以补充汇报。汇报时可以借助演示来帮助说明。如果汇报中出现不同的想法,师生可以共同梳理,比较各种想法,寻找能保证摸出2个同色球的最少次数,达成统一认识。即:本题中,要想摸出的球一定有2个同色的,最少要摸出3个球。

2.想一想,在反思中学习推理。

师:同学们,为什么至少摸出3个球就一定能保证摸出的球中有两个是同色的?

请学生先想一想,再和同桌说一说,最后全班交流。

可以引导他们这样思考:球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。

三、深入探究,沟通联系

师:为什么前面有些同学会认为在4个蓝球和4个红球中,要想一定摸出2个同色的球,最少要摸出5个来?请大家猜一猜,他们是怎样想的?

(如果没人猜出来,可以请先前这样想的同学说一说当时的想法。)

师:这种想法实际上是把今天学习的例题3和我们前面学过的“抽屉问题”联系起来了,把4看成了“抽屉数”,也就是把每种颜色球的个数当成了“抽屉数”。这种想法有没有一点道理?例题3和“抽屉问题”有联系吗?

请学生先独立思考一会,再在小组内讨论,最后全班交流。

师:既然例题3和“抽屉问题”有联系,那么,解决例题3的问题,有没有其它的方法?能否用前面学过的“抽屉问题”的规律来帮忙解决?

请学生先和同桌讨论,再全班交流。

师:应用前面所学的“抽屉原理”进行反向推理。根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”,就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少要比抽屉数多 1”。现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。”

师:请同学们反过来思考一下,至少摸出5个球,就一定能保证摸出的球中有几个是同色的?

四、对比练习,感悟新知

1.说一说。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球? (完成课本第70页“做一做”第2题。)

教师可以引导学生应用例题3的结论,直接解决“做一做”第2题的问题。

2.算一算。

向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?

1:“六年级里一定有两人的生日是同一天。”

2:“六(2)班中至少有5人是同一个月出生的。”

(完成课本第70页“做一做”第1题。)

“做一做”第1题是“抽屉原理”的典型例子。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。教师要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷124……1,因此,总有一个抽屉里至少有5(即41)个人,也就是他们的生日在同一个月。

五、总结评价

师:这节课你有哪些收获或感想?

六、拓展练习(选做)

1.任意给出5个非0的自然数。有人说一定能找到3个数,让这3个数的和是3的倍数。你信不信?

2.188个数任意围成一个圆圈。在这个圈上,一定有3个相邻的数之和大于13。你知道其中的奥秘吗?

家庭作业

1.做一做。把红、黄、蓝三种颜色的小棒各10根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的小棒?保证有2对同色的小棒呢?(完成课本第71页第5题。)

2.试一试。给下面每个格子涂上红色或蓝色。观察每一列,你有什么发现?如果只涂两列的话,结论有什么变化呢?

(完成课本第71页第6题。)

板书设计:

抽屉原理

要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有