巧记口诀确定正方体表面展开图

标签:
股票 |
分类: 教学 |
巧记口诀确定正方体表面展开图
正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:
四方成线两相卫,六种图形巧组合;
跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:
一、四方成线两相卫,六种图形巧组合
以上六种展开图可归结为四方连线,即
二、跃马失蹄四分开
以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯
这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连
1 |
2 |
3 |
五、识图巧排“7”、“凹”、“田”
1 |
2 |
3 |
|
4 |
|
|
5 |
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
下面的平面图形中,是正方体的平面展开图的是(
解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。A、D都有“凹”形结构,B有“田”形结构,故应选C
马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.
(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.)
解析:本题可用“跃马失蹄四分开”来解决。图中具备了三二相连的结构,故本题有四种答案,即小方块的位置有图中
试一试:
1下列图形中,不是立方体表面展开图的是(
2.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是(
3.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次是(
(A)0,-2,1(B)0,1,-2(C)1,0,-2(D)-2,0,1
在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没有把握,还可以动手试一试)
在正方体的展开图的教学中,一般是让学生动手把正方体纸盒展开,通过得到不同形状的展开图,组织学生交流讨论,最后可以发现共有十一种情况。
总结出十一种情况并不难,难点在于学生是否能够准确地判断出,什么样的六个正方形相连接能拼成完整的正方形。经过数学家细心的罗列:6个正方形一共有35种拼接方法,也就是说并不是都能拼成完整的正方体。
为了使学生能够脱离教具,判断哪些图形是正方体的展开图,可以将展开图进行分类,归纳出每一类的特点。下面是根据其他教师总结出的规律改编的正方体展开图口诀。
正方体的展开图可以按照行进行分类。主要有以下特点:
1.上中下三行,每两行之间只能有一条边重合。
2.222、33两类是特殊的,为阶梯状。
3.有的看似不属于任一类,旋转后就是其中一类了。
在下面的口诀中,前四行是描述十一种展示图的特点,后两行是描述哪些图形不能构成正方体,哪些面是相对的面,哪些面是相邻的面。
正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;
相间之端是对面,间二拐角面相邻。