加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《平面图形的周长和面积》教学设计

(2015-06-03 16:34:12)
标签:

365

平面图形的周长和面积的复习课

教学内容

教科书第87页内容,及相应练习题

教材分析

《平面图形的周长和面积》是六年级下学期总复习《图形与几何》中的一节课。它是在复习学过平面图形的特点的基础上进行教学的,是一节复习课。教材把这一内容安排在“图形与几何”的第二课时,意图是让学生在整理知识中进一步体验各平面图形之间的关系。教材的例题首先通过小精灵提问“说说什么是平面图形的周长、什么是平面图形的面积。”旨在让学生通过复习,明确平面图形周长和面积的意义。接着教材通过图示,要求学生写出各图形的周长和面积的计算公式,并说一说这些计算公式是怎样推导出的。不仅是让学生掌握长方形、正方形、三角形、梯形、圆等基本平面图形的周长和面积计算公式及其推导过程,加以熟练的运用,更重要的是这一图示引导学生构建平面图形的周长与面积的知识网络,形成知识体系,让学生进一步感受数学知识间的相互联系,巩固学生的空间观念,提高学生的学习能力。

学情分析

学生通过前阶段的学习,基本掌握了各种平面图形的周长和面积的计算方法,但是由于时间的迁移等各种原因,学生对于公式的推导过程有所淡忘,导致在应用公式解决实际问题中,常常遇到问题,从而影响学生的进一步学习。老师所要做的就是引导学生借助各种素材,进一步建立这些知识间的联系,从而起到巩固复习的目的。

教学目标

1.引导学生回忆整理平面图形的周长和面积的公式及推导过程;

2.引导学生探索知识间的相互联系,构建知识网络,从而加深对知识的理解,领会学习方法;

3.渗透“事物之间是相互联系的”的思想,体验数学与生活的联系。

(本节课的教学目标主要是通过复习计算公式和面积公式的推导过程,帮助学生构建知识网络,理解图形间的关系,利用公式解决实际问题,有待于在下节课中去体现)

教学重难点

1.      整理相关知识,形成知识网络,探索知识间的内在联系。

2.   平面图形周长和面积计算公式的推导过程,尤其是面积公式的推导过程。

教具、学具准备

学生课前准备梳理的框架图、平面图形的模型,教师准备课件。

教学过程

一、引入课题,明确周长和面积的意义

同学们上节课我们复习了平面图形的特征,到目前为止我们学习了哪些平面图形

引导学生说出所学过的六种平面图形。

 

(因为毕竟这是下学期的复习内容,回顾学过哪些平面图形,对于下面进一步的复习会有很大的帮助)

什么是平面图形的周长和面积呢

明确

围成一个图形的所有边长的总和,叫作它们的周长。

物体的表面或围成平面图形的大小,叫做它们的面积。

我们一起来回顾一下。(课件出示周长和面积的意义)

那我们今天就一起来复习平面图形的周长和面积。(引出课题)

设计意图让学生根据自己的理解说什么是周长和面积,通过回顾,从概念上进一步明确它们的含义,以及使用的单位,从而为下面的复习做好铺垫。)

二、复习回顾平面图形周长和面积的计算公式

1、明确任务

师:刚才大家所说的就是周长和面积的意义,(板书意义)

课前老师给大家布置了三个任务,一起来回顾一下是哪三个任务,

(课件出示1、整理复习平面图形的周长和面积的计算公式。2、整理复习平面图形面积公式的推导过程。3、根据面积公式的推导过程,梳理它们之间的关系。)

(通过磨课发现,原来设计的两个课前任务,尤其是第一个任务,目标比较模糊,学生在课下不容易操作,以及课上解决这一任务时,产生了比较混乱的现象,严重影响教学效率。因此,由原来的两个任务改为三个任务,这样每个任务都比较单一,目的性也更强了)

2、复习计算公式

我们先来看第一个任务,哪位同学把整理的平面图形的计算公式给大家介绍一下

明确

长方形的周长=(长+宽)×2,用字母表示是C=2 (a+b)

正方形的周长=边长×4 ,用字母表示是C=4a

圆的周长=圆周率×直径=2×圆周率×半径,用字母表示是C=ЛdC=2Лr

长方形的面积=长×宽,用字母表示是 S=ab

正方形的面积=边长×边长,用字母表示是S=a2,

平行四边形的面积=底长×高,用字母表示是S=ah

三角形的面积=底长×高÷2,用字母表示是S=ah÷2

梯形的面积=(上底长下底长)×高÷2,用字母表示是S=(a+b) h÷2

圆的面积=Л×半径×半径,用字母表示是S=Л×r2

设计意图要求学生在家提前整理,借助学生的汇报,进一步明确周长和面积的计算公式

三、复习面积公式的推导过程

刚才xx带领我们复习了周长和面积的计算方法,(板书:计算方法)那这些平面图形的面积公式又是如何推导出来的呢(课件出示第二个任务)下面请同学们在小组内互相说一说。

(每当进行下一个任务时,先让学生明确要进行什么任务了,对于提高课堂效率很有帮助)

小组活动……

哪个小组带领大家复习一下

(借助学具展示)……

此环节生生间、师生间会展开交流,可能会出现以下几个比较集中的问题

1)两个完全一样的三角形除了可以拼成平行四边形,还可能拼成什么图形

两个完全一样的直角三角形,可以拼成长方形;两个完全一样的等腰直角三角形,可以拼成正方形。

2)可不可以说平行四边形的面积就是三角形面积的二倍

平行四边形的面积是与他等底等高的三角形面积的2倍。

3)两个完全一样的梯形,除了可以拼成平行四边形外,还可以拼成什么图形

两个完全一样的直角梯形,可以拼成长方形;两个完全一样的直角梯形,上底与下底的和等于高时,可以拼成正方形。

4)圆的面积公式是如何推导出S=Л×r2

因为拼成的平行四边形的底是圆周长的一半,而高是圆的半径,周长的一半就是Лr,所以面积就是Лr×r=Л×r2

5)圆可不可以拼成正方形

不能,因为拼成的平行四边形的底是圆周长的一半,而高是圆的半径,底永远是高的Л倍。

(通过磨课发现,学生出现的问题,多集中在这几点上,然而这几个知识点的处理对于下面构建框架图是很有必要的)

设计意图在初次汇报的基础上,再次进行讨论汇报,目的是使学生更好地理解平面图形周长和面积公式的推导过程,并且对于某些特殊情况进行补充,以达到复习巩固的目的

四、梳理图形间的关系

师:从他们组的介绍当中,有没有发现他们的推导过程体现着图像间的内在联系,课前还要求同学们根据面积公式的推导过程梳理了它们之间的关系,(课件出示第三个任务)小组内再互相的说一说,根据他们的介绍可以进一步进行补充。

……(小组活动,梳理框架图,重点说根据什么这样梳理

哪个小组把你们的想法给大家说一说

正方形的面积是根据长方形的面积推导出来的,平行四边形的面积是根据长方形或正方形的面积推导出来的,三角形和梯形、圆形的面积是根据平行四边形的面积推导出来的。   

 

引导学生根据刚才的面积公式的推导过程进行补充。

刚才大家所说的,都是根据刚才推导过程中的发现。这样我们就可以将关系图进一步明确。(借助黑板上的模型梳理关系图)

 

(借助模型在黑板上去构建框架图,这样更加直观,更利于学生的理解和交流)

设计意图通过初次汇报,使学生对平面图形的周长和面积的计算公式和内部关系初步感知,为下面的拓展和练习做准备

五、公式的统一

刚才我们结合推倒过程梳理了图形间的关系,不知道大家注意到了没有,这些平面图形中,除了由曲线围成的圆以外,剩下的五个图形的面积公式可不可以统一成一种图形的面积公式呢

(独立思考)

谁来说说你的想法学生可能会有以下几种想法

1长方形,因为正方形是一个特殊的长方形,可以用长方形的面积公式,而平行四边形沿高剪下,可以拼成一个长方形,而三角形与梯形虽然说要除以2,单也可以变成长方形。

2平行四边形的面积

但我也有我自己的想法,大家想知道吗?(课件)大家仔细观察,这是什么图形?(梯形)看发生了什么变化(变成三角形了)也就是说变成了一个上底为(0)的特殊的梯形,在仔细观察发生什么变化?(长方形),现在变成了一个上底和下底相等的特殊梯形,那这个呢(平行四边形)。

    现在你再想想可以统一成那个图形的公式呢板书s=(a+a)b÷2=2ab÷2=ab

s=(a+0)b÷2=ab÷2

面积公式可以统一成梯形面积的公式,这恐怕是大家没有想到的。看来平面图形的周长和面积中蕴含着丰富的知识等待着我们去发现。

(这一部分是本节课的一个升华,也是难点。即使让学生小组去讨论,理解起来有一定的难度,所以让学生直接独立思考,把自己的第一感受说出来。其实这里并没有真正意义上的对与错,学生说出是长方形或平行四边形,正是由于他们理解了根据面积公式推导过程构建的图形间的关系。而后教师借助课件演示引导学生初步感知。)

设计意图将平面图形的面积除圆之外都概括成一种图形的面积公式,目的并不是真正的统一,而是训练学生观察图形间、知识间的联系,从而发展学生的创造性思维

六、巩固练习

1、师请大家仔细看这两组图形,认真审题,每组中的两个图形的周长和面积相等吗(课件)

 

有想法了吗?谁来说一说

1、周长不等,面积相等

2、周长相等,面积不等,因为……

那下面这两道题对吗

1.如果两个平面图形的周长相等,则它们的面积一定相等。

2.如果两个平面图形的面积相等,则它们的周长一定相等。

(借助上面的习题,让学生进一步感知周长相等的图形面积不一定相等,面积相等的图形周长不一定相等。)

2.大家仔细看,把一个长方形拉成一个平行四边形,长方形和平行四边形的周长和面积不变,对不对呢

不对,周长不变,面积变了,因为底没变,高缩小了。

3.判断

(1)三角形的面积等于平行四边形面积的一半。

(2)同底等高的三角形,他们的形状不一定相等,但面积一定相等。

(3)半径是2厘米的圆,周长和面积相等。

设计意图通过有针对性、有梯度的练习让学生应用所学的知识解决实际问题,让学生更好地理解和掌握

看来我们在面对这类问题是,还要灵活的运用。

七、小结

同学们真的很棒,这节课我们重点对平面图形的意义及计算方法进行了梳理和复习,课下请同学们再以小组为单位,整理与本节课内容有关的容易出错的题型,下节课进行汇报。(课件出示课下小组需要完成你的任务

    设计意图在本节课的复习基础上,留给学生课下的小组任务,整理易错的题型,下节课进行汇报。为下节课的复习做好准备。)

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有