[R语言统计]二项分布及其应用
(2014-05-09 22:29:16)
标签:
r语言医学统计学孙振球it |
二项分布
例6-1
#源代码例6-1:
dbinom(6,10,0.7)#二项分布函数
dbinom(7,10,0.7)
dbinom(8,10,0.7)
# 其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率
>#源代码例6-1:
>dbinom(6,10,0.7)
[1] 0.2001209
>dbinom(7,10,0.7)
[1] 0.2668279
>dbinom(8,10,0.7)
[1] 0.2334744
># 其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率
例6-2
# 源代码例6-2:
binom.test(6,13,p=6/13,conf.level=0.95)
># 源代码例6-2:
>binom.test(6,13,p=6/13,conf.level=0.95)
data:
number of successes = 6, number of trials =13, p-value = 1
alternative hypothesis: true probability of success is not equal to 0.4615385
95percent confidence interval:
0.19223240.7486545
sampleestimates:
probability of success
例6-3 在观测一种药物对某种非传染性疾病的治疗效果时,用该药治疗了此种非传染性疾病患者100人,发现55人有效,试据此估计该药物治疗有效率的95%可信区间。
# 源代码例6-3:
binom.test(55,100,p=0.55,conf.level=0.95)
例6-4
# 源代码例6-4:
binom.test(9,10,p=0.55,alternative="greater")
># 源代码例6-4:
>binom.test(9,10,p=0.55,alternative="greater")
data:
number of successes = 9, number of trials =10, p-value = 0.02326
alternative hypothesis: true probability of success is greater than 0.55
95percent confidence interval:
0.60583671.0000000
sampleestimates:
probability of success
例6-5:已知某种非传染性疾病采用甲药治疗的有效率为0.60。今改乙药治疗该疾病患者10人,发现9人有效。问甲、乙两种药物的疗效是否不同?
# 源代码6-5:
binom.test(9,10,p=0.6,alternative="two.sided")
># 源代码6-5:
>binom.test(9,10,p=0.6,alternative="two.sided")
data:
number of successes = 9, number of trials =10, p-value = 0.05865
alternative hypothesis: true probability of success is not equal to 0.6
95percent confidence interval:
0.55498390.9974714
sampleestimates:
probability of success
例6-6
# 源代码6-6:
binom.test(117,180,p=0.45,alternative="greater")
># 源代码6-6:
>binom.test(117,180,p=0.45,alternative="greater")
data:
number of successes = 117, number of trials =180, p-value = 5.238e-08
alternative hypothesis: true probability of success is greater than 0.45
95percent confidence interval:
0.58718781.0000000
sampleestimates:
probability of success
例6-7
# 源代码6-7:
data67<-matrix(c(36,120,22,110),nr = 2)
chisq.test(data67)
># 源代码6-7:
>data67<-matrix(c(36,120,22,110),nr = 2)
>chisq.test(data67)
data:
X-squared = 1.4499, df = 1, p-value = 0.2285
注:此题可以采用卡方检测,没用采用书中的方法,得出p值为0.2285,不能拒绝原假设。
例6-8
real.freq <- c(26,10,28,18)
p <- (10+28*2+18*3)/(82*3)
data<- dbinom(0:3,3,p)*82
K <- sum((real.freq-data)^2/data)
1-pchisq(K,2)
>1-pchisq(K,2)
[1] 5.297263e-10
思路:一旦发现有阳性的就停止检验,划为阳性群,因此,只有阴性群才是全部检测,此例中300个群中有270个阳性群,因此,阴性群的概率就是1-270/300,阴性群有20只钉螺,开20次方就是一只钉螺未感染的概率,与1相减即为一只钉螺感染的概率。在R中开一个数X的20次方即为X(1/20)。
>1-(1-270/300)^(1/20)
[1] 0.1087491
后面的泊松分布计量量小,略去。