加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

六年级数学分数乘整数教学设计及反思

(2010-10-13 21:00:12)
标签:

宋体

整数

分数

乘法

约分

杂谈

分类: 教育教学

六年级数学分数乘整数教学设计

执教者:姜春丽

  教学目标

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学重点

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学难点

  引导学生总结分数乘整数的计算法则.

  教学过程

  一、设疑激趣

  (一)下面各题怎样列式?你是怎样想的?

  512是多少?1023是多少?2570是多少?

  (概括:整数乘法表示求几个相同加数的和的简便运算)

  (二)计算下面各题,说说怎样算?

   + +             + + =

  说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

  同学之间交流想法:+ + =    =  = 

   ×3这个算式表示什么?为什么可以这样计算?

教师板书: + + = ×3= 

为什么只把分子与整数相乘,分母10不和3相乘?

  二、提出问题

  (一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  1.读题,说说 块是什么意思?

  2.根据已有的知识经验,自己列式计算

  三、解决问题

  (一)学生汇报,并说一说你是怎样想的?

  方法1+ + = = = (块)

  方法2: ×3= + + = = = = (块)

  (二)比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的.

  区别:一种方法是加法,另一种方法是乘法.

  教师板书: + + = ×3

  (三)为什么可以用乘法计算?

  加法表示3个 相加,因为加数相同,写成乘法更简便.

  (四) ×3表示什么?怎样计算?

  表示3个 的和是多少?

   + + = = = = ,用分子23的积做分子,分母不变.

  (五)提示:为计算方便,能约分的要先约分,然后再乘.

  四、归纳、概括:

  (一)结合 = ×3=+ + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算.

  (二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

  五、拓展应用

  (一)基本练习

  1.改写算式

   + + + =   )×(  

   + + + + + + + =   )×(  

  2.只列式不计算:3个 是多少?  5个 是多少?

    3.计算(说一说怎样算)

   ×     ×     ×21     ×    ×8

  思考:为什么先约分再相乘比较简便?

(二)综合练习

应用题

  (1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

  (2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

  (三)拓展练习

  1.一条路,每天修 千米,4天修多少千米?

  2.一条路,每天修全路的 ,4天修全路的几分之几?

 

  七、板书设计

分数乘整数

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

  例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

  用加法算: + + = = = (块)

  用乘法算: ×3= + + = = = = (块)

  答:3人一共吃了 块.

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

  

 

 

 

 

分数乘整数教学反思

本单元有很重要的地位,它既在学生掌握了整数乘法、分数的意义和性质、分数加减法以及约分等知识的基础上进行学习的,又是学生学习分数除法、比、分数四则混合运算及百分数知识的重要基础。于是,我教学时就从学生的已有知识基础和生活经验出发,引导学生在解决实际问题的情境中,理解分数乘整数的意义。

 

一、尊重学生的“数学现实”。

开头依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设置复习题,为教学重点服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习相同分数加法,为推导计算方法进行铺垫。

 

  在第一次教学《分数乘整数》之后,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时,我故意将分数乘整数的结论“灌输”给学生,省去了获取结论的研究过程,意在让学生问“为什么”。这时学生抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母10不和3相乘?”接下来的教学就引导学生带着“为什么”去探索。将例1进一步作为验证计算方法的题材。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。

 

  二、实现教学学习的个性化。

 

  每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,教师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果;也有的学生通过生动的数学实例进行了分析。由此我深深地体会到,包或教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。

 

  三、反思不足,提炼经验。

 

本节课的重点是得出分数乘整数的计算方法,约分时,只能将分母与整数约分。我还没有完全放手让学生自己总结出计算方法,没时间多练。对学生还是不放心,老师讲得太多,强调的主题太多,一些注意事项没有变成学生的语言,让学生去发现,去解决,从而记忆不是很深刻。我觉得补充的内容较多,各种题型的练习,让课堂显得时间太紧张,其实我太注重题海战术,没有让学生充分掌握好,跑得太快。只顾及到了成绩好的学生,从这一点,我深深体会到什么是“备教材”,“备学生”。课前要把知识点吃透把握住重点、难点,哪些要补充,哪些地方要创造性使用教材。学生以一个什么样的方式更容易接受,老师哪些地方该讲不该讲,都需要我们深思熟虑。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有