加载中…
个人资料
北大袁萌
北大袁萌 新浪个人认证
  • 博客等级:
  • 博客积分:0
  • 博客访问:42,509
  • 关注人气:10,635
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

康托尔连续统假设(CH)不成立

(2018-07-01 08:11:02)

康托尔连续统假设(CH)不成立

   去年,国际数学界发生一件大事,对此,国内无人报道,即康托尔连续统假设(CH)不成立。也就说,自然数与实数一样多。为此,数学教科书需要改写了。

    1900年,希尔伯特提出23个数学难题,康托尔假设摆在第一的位置。直到上世纪60年代,Cohen利用“forcing”法,证明CH独立于ZFC公理系统,即不能证明其为真,也不能证明其为假。

1967年,基于模型论的研究,Keisler提出数学理论的“复杂度”理念,企图把数学理论按照其复杂度分类。

2006年,30年过去了,有人重新翻开Keisker复杂度理论,发现它与康托尔假设有关,2016年,发表了600页的长篇论文,并于2017年荣获豪斯多夫大奖。

请见科普文章“Mathematicians Measure Infinities and Find They’re Equal(此文发表于2017912日)”

老实说,数学就是研究无穷的的学问。百度文库发表的相关文章,全是胡说八道!

袁萌  71

附:

infinity

Mathematicians Measure Infinities and Find They’re Equal

By Kevin Hartnett

September 12, 2017

Two mathematicians have proved that two different infinities are equal in size, settling a long-standing question. Their proof rests on a surprising link between the sizes of infinities and the

complexity of mathematical theories.

 

111

 

 

 

 

 

 

 

Colors Collective for Quanta Magazine

In a breakthrough that disproves decades of conventional wisdom, two mathematicians have shown that two different variants of infinity are actually the same size. The advance touches on one of the most famous and intractable problems in mathematics: whether there exist infinities between the infinite size of the natural numbers and the larger infinite size of the real numbers.

The problem was first identified over a century ago. At the time, mathematicians knew that “the real numbers are bigger than the natural numbers, but not how much bigger. Is it the next biggest size, or is there a size in between?” said

 

Maryanthe Malliaris

of the University of Chicago, co-author of the new work along with

Saharon Shelah

of the Hebrew University of Jerusalem and Rutgers University.

In their new work, Malliaris and Shelah resolve a related 70-year-old question about whether one infinity (call it p) is smaller than another infinity (call it t). They proved the two are in fact equal, much to the surprise of mathematicians.

It was certainly my opinion, and the general opinion, that p should be less than t,” Shelah said.

Malliaris and Shelah published their proof last year in the Journal of the American Mathematical Society and were honored this past July with one of the top prizes in the field of set theory. But their work has ramifications far beyond the specific question of how those two infinities are related. It opens an unexpected link between the sizes of infinite sets and a parallel effort to map the complexity of mathematical theories.

Many Infinities

The notion of infinity is mind- bending. But the idea that there can be different sizes of infinity? That’s perhaps the most counterintuitive mathematical discovery ever made. It emerges, however, from a matching game even kids could understand.

Suppose you have two groups of objects, or two “sets,” as mathematicians would call them: a set of cars and a set of drivers. If there is exactly one driver for each car, with no empty cars and no drivers left behind, then you know that the number of cars equals the number of drivers (even if you don’t know what that number is).

In the late 19th century, the German mathematician Georg Cantor captured the spirit of this matching strategy in the formal language of mathematics. He proved that two sets have the same size, or “cardinality,” when they can be put into one-to-one correspondence with each other — when there is exactly one driver for every car. Perhaps more surprisingly, he showed that this approach works for infinitely large sets as well.

Consider the natural numbers: 1, 2, 3 and so on. The set of natural numbers is infinite. But what about the set of just the even numbers, or just the prime numbers? Each of these sets would at first seem to be a smaller subset of the natural numbers. And indeed, over any finite stretch of the number line, there are about half as many even numbers as natural numbers, and still fewer primes.

Yet infinite sets behave differently. Cantor showed that there’s a one-to-one correspondence between the elements of each of these infinite sets.

1

2

3

4

5

(natural numbers)

2

4

6

8

10

(evens)

2

3

5

7

11

(primes)

Because of this, Cantor concluded that all three sets are the same size. Mathematicians call sets of this size “countable,” because you can assign one counting number to each element in each set.

After he established that the sizes of infinite sets can be compared by putting them into one-to-one correspondence with each other, Cantor made an even bigger leap: He proved that some infinite sets are even larger than the set of natural numbers.

 

 

 

Lucy Reading-Ikkanda/Quanta Magazine

Consider the real numbers, which are all the points on the number line. The real numbers are sometimes referred to as the “continuum,” reflecting their continuous nature: There’s no space between one real number and the next. Cantor was able to show that the real numbers can’t be put into a one-to-one correspondence with the natural numbers: Even after you create an infinite list pairing natural numbers with real numbers, it’s always possible to come up with another real number that’s not on your list. Because of this, he concluded that the set of real numbers is larger than the set of natural numbers. Thus, a second kind of infinity was born: the uncountably infinite.

What Cantor couldn’t figure out was whether there exists an intermediate size of infinity — something between the size of the countable natural numbers and the uncountable real numbers. He guessed not, a conjecture now known as the continuum hypothesis.

In 1900, the German mathematician David Hilbert made a list of 23 of the most important problems in mathematics. He put the continuum hypothesis at the top. “It seemed like an obviously urgent question to answer,” Malliaris said.

In the century since, the question has proved itself to be almost uniquely resistant to mathematicians’ best efforts. Do in-between infinities exist? We may never know.

Forced Out

Throughout the first half of the 20th century, mathematicians tried to resolve the continuum hypothesis by studying various infinite sets that appeared in many areas of mathematics. They hoped that by comparing these infinities, they might start to understand the possibly non-empty space between the size of the natural numbers and the size of the real numbers.

Many of the comparisons proved to be hard to draw. In the 1960s, the mathematician Paul Cohen explained why. Cohen developed a method called “forcing” that demonstrated that the continuum hypothesis is independent of the axioms of mathematics — that is, it couldn’t be proved within the framework of set theory. (Cohen’s work complemented work by Kurt Gödel in 1940 that showed that the continuum hypothesis couldn’t be disproved within the usual axioms of mathematics.)

Cohen’s work won him the Fields Medal (one of math’s highest honors) in 1966. Mathematicians subsequently used forcing to resolve many of the comparisons between infinities that had been posed over the previous half-century, showing that these too could not be answered within the framework of set theory. (Specifically, Zermelo-Fraenkel set theory plus the axiom of choice.)

Some problems remained, though, including a question from the 1940s about whether p is equal to t. Both p and t are orders of infinity that quantify the minimum size of collections of subsets of the natural numbers in precise (and seemingly unique) ways.

Briefly, p is the minimum size of a collection of infinite sets of the natural numbers that have a “strong finite intersection property” and no “pseudointersection,” which means the subsets overlap each other in a particular way; t is called the “tower number” and is the minimum size of a collection of subsets of the natural numbers that is ordered in a way called “reverse almost inclusion” and has no pseudointersection.

The details of the two sizes don’t much matter. What’s more important is that mathematicians quickly figured out two things about the sizes of p and t. First, both sets are larger than the natural numbers. Second, p is always less than or equal to t. Therefore, if p is less than t, then p would be an intermediate infinity — something between the size of the natural numbers and the size of the real numbers. The continuum hypothesis would be false.

Mathematicians tended to assume that the relationship between p and t couldn’t be proved within the framework of set theory, but they couldn’t establish the independence of the problem either. The relationship between p and t remained in this undetermined state for decades. When Malliaris and Shelah found a way to solve it, it was only because they were looking for something else.

An Order of Complexity

Around the same time that Paul Cohen was forcing the continuum hypothesis beyond the reach of mathematics, a very different line of work was getting under way in the field of model theory.

 

 

 

H. Jerome Keisler invented “Keisler’s order.”

Courtesy of H. Jerome Keisler

For a model theorist, a “theory” is the set of axioms, or rules, that define an area of mathematics. You can think of model theory as a way to classify mathematical theories — an exploration of the source code of mathematics. “I think the reason people are interested in classifying theories is they want to understand what is really causing certain things to happen in very different areas of mathematics,” said H. Jerome Keisler, emeritus professor of mathematics at the University of Wisconsin, Madison.

In 1967, Keisler introduced what’s now called Keisler’s order, which seeks to classify mathematical theories on the basis of their complexity. He proposed a technique for measuring complexity and managed to prove that mathematical theories can be sorted into at least two classes: those that are minimally complex and those that are maximally complex. “It was a small starting point, but my feeling at that point was there would be infinitely many classes,” Keisler said.

It isn’t always obvious what it means for a theory to be complex. Much work in the field is motivated in part by a desire to understand that question. Keisler describes complexity as the range of things that can happen in a theory — and theories where more things can happen are more complex than theories where fewer things can happen.

A little more than a decade after Keisler introduced his order, Shelah published an influential book, which included an important chapter showing that there are naturally occurring jumps in complexity — dividing lines that distinguish more complex theories from less complex ones. After that, little progress was made on Keisler’s order for 30 years.

 

 

 

Saharon Shelah is a co-author of the new proof.

Yael Shelah

Then, in her 2009 doctoral thesis and other early papers, Malliaris reopened the work on Keisler’s order and provided new evidence for its power as a classification program. In 2011, she and Shelah started working together to better understand the structure of the order. One of their goals was to identify more of the properties that make a theory maximally complex according to Keisler’s criterion.

Malliaris and Shelah eyed two properties in particular. They already knew that the first one causes maximal complexity. They wanted to know whether the second one did as well. As their work progressed, they realized that this question was parallel to the question of whether p and t are equal.      

In 2016, Malliaris and Shelah published a 60-page paper that solved both problems: They proved that the two properties are equally complex (they both cause maximal complexity), and they proved that p equals t.            

Somehow everything lined up,” Malliaris said. “It’s a constellation of things that got solved.”

 

This past July, Malliaris and Shelah were awarded the Hausdorff medal, one of the top prizes in set theory. The honor reflects the surprising, and surprisingly powerful, nature of their proof. Most mathematicians had expected that p was less than t, and that a proof of that inequality would be impossible within the framework of set theory. Malliaris and Shelah proved that the two infinities are equal. Their work also revealed that the relationship between p and t has much more depth to it than mathematicians had realized.

I think people thought that if by chance the two cardinals were provably equal, the proof would maybe be surprising, but it would be some short, clever argument that doesn’t involve building any real machinery,” said Justin Moore, a mathematician at Cornell University who has published a brief overview of Malliaris and Shelah’s proof.

Related:

 

To Settle Infinity Dispute, a New Law of Logic

Is Infinity Real?

Mathematicians Bridge Finite-Infinite Divide

Instead, Malliaris and Shelah proved that p and t are equal by cutting a path between model theory and set theory that is already opening new frontiers of research in both fields. Their work also finally puts to rest a problem that mathematicians had hoped would help settle the continuum hypothesis. Still, the overwhelming feeling among experts is that this apparently unresolvable proposition is false: While infinity is strange in many ways, it would be almost too strange if there weren’t many more sizes of it than the ones we’ve already found.

Clarification: On September 12, this article was revised to clarify that mathematicians in the first half of the 20th century wondered if the continuum hypothesis was true. As the article states, the question was largely put to rest with the work of Paul Cohen.

This article was reprinted on ScientificAmerican.com and Spektrum.de.

 

 

Kevin Hartnett

Senior Writer

 

September 12, 2017

 

continuum hypothesis

 

foundations of mathematics

 

infinity

 

mathematical logic

 

mathematics

 

model theory

 

set theory

 

Share this article

 

 

 

 

 

 

 

 

Subscribe now

Most recent newsletter

 

The Quanta Newsletter

Get highlights of the most important news delivered to your email inbox

 

Subscribe

Most recent newsletter

Also in Mathematics

 

fluid dynamics

Mathematicians Tame Turbulence in Flattened Fluids

By

Joshua Sokol

 

mathematical biology

Mathematics Shows How to Ensure Evolution

By

John Rennie

 

Q&A

Her Key to Modeling Brains: Ignore the Right Details

By

Siobhan Roberts

Comment on this article

Quanta Magazine moderates comments to facilitate an informed, substantive, civil conversation. Abusive, profane, self-promotional, misleading, incoherent or off-topic comments will be rejected. Moderators are staffed during regular business hours (New York time) and can only accept comments written in English.

 

Show comments

 

 

Next article

Why Math Is the Best Way to Make Sense of the World

 

 

 

 

 

 

 

 

 

 

About Quanta

Archive

Contact Us

Terms & Conditions

Privacy Policy

Simons Foundation

All Rights Reserved © 2018

 

 

 

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有