加载中…
个人资料
北大袁萌
北大袁萌 新浪个人认证
  • 博客等级:
  • 博客积分:0
  • 博客访问:41,825
  • 关注人气:10,635
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

无穷小微积分与模型论

(2018-05-21 15:43:11)

无穷小微积分与模型论

    学习鲁宾逊无穷小理论必须了解数理逻辑模型论的基础知识。

袁萌   521

附:

无穷小微积分基础的前言简介

    无穷小微积分不是空穴来风,讲科幻故事。无穷小微积分的理论基础很深,需要使用数理逻辑模型论工具(超幂)来构造。在无穷小微积分基础的前言中,对此有所阐述。老翁希望(数理逻辑)圈外人士,对此不要说三道四,指手画脚。

J.Keisler在该书的前言(Preface )中明确表示:

subject of ininitesimal analysis found in theresearch literature. To go beyond infinitesimal calculus one should at least be familiar with some basic notions from logic and model theory(模型论). Chapter 15 introduces the concept of anonstandard universe, explains the use of mathematical logic, superstructures,and internal and external sets, uses ultrapowers(超幂) to build anonstandard universe, and presents uniqueness theorems forthe hyperreal number systems and nonstandard universes.

The simple set of axioms for the hyperrealnumber system given here (and in ElementaryCalculus) make it possible to present infinitesimal calculus at the college freshman level, avoiding concepts from mathematicallogic. It is shown in Chapter 15 that these axioms areequivalent to Robinson’s approach.

For additional background in logic and modeltheory, the reader can consult the book [CK 1990]. Section4.4 of that book gives further results on nonstandard universes. Additional background in infinitesimal analysis can be found in the book [Goldblatt 1991].

I thank my late colleague Jon Barwise, andKeith Stroyan of the University of Iowa, for valuable advicein preparing the First Edition of this monograph. In the thirty years between the first and the present edition, I have ben geted from equally valuable and much appreciated advice from friends and colleagues too numerous to recount here.

袁萌  2017219

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有