加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

第2.8节  隐函数

(2013-07-30 02:54:24)
标签:

it

2.8 IMPLICI FUNCTIONS

We now turn to the topic of implicit differentiation. We say that yis an implicit function of xif we are given an equation

第2.8节 <wbr> <wbr>隐函数                            

              

 

Which determines y as a function of x. An example is x+ xy=2y. Implicit differentiation is a way of finding the derivative of ywithout actually solving for yas a function of x, assume that dy/dxexists. The method has two steps:

 

Step 1   Differentiate both sides of the equation σ(x, y) = ι (x,y) to get a new equation

第2.8节 <wbr> <wbr>隐函数(1)            

 

 

The Chain Rule is often used in this step.

 

Step 2 Solve the new Equation 1 for dy/dx. Then answer will usually involve both xand y.

       In each of the examples below, we assume that dy/dxexists and use implicit differentiation to find the value of dy/dx.

 

EXAMPLE  Given the equation  x+ xy =2y, find dy/dx.

 

第2.8节 <wbr> <wbr>隐函数Step 1  

 

          We find each side by the Sum and Product Rules,

第2.8节 <wbr> <wbr>隐函数         

 

 

 

 

 

 

 

Thus our new equation is

第2.8节 <wbr> <wbr>隐函数

 

 

Step 2 Solve for dy/dx.

第2.8节 <wbr> <wbr>隐函数             

 

 

 

 

 

We can check our answer by solving the original equation for yand using ordinary differentiation:

第2.8节 <wbr> <wbr>隐函数          

 

 

 

 

 

By the Quotient Rule,

第2.8节 <wbr> <wbr>隐函数         

 

 

 

A third way to find dy/dxis to solve the original equation for x, find dx/dy,and then use the Inverse Function Rule.

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

 

 

To see that our three answers

第2.8节 <wbr> <wbr>隐函数 

 

             

are all the same we substitute___________ for y :

 

第2.8节 <wbr> <wbr>隐函数 

 

 

 

 

 

In Example 1, we found dy/dxby three different methods.

(a)Implicit differentiation. We get dy/dxin terms of both x and y.

(b)Solve for y as a function of xand differentiate directly. This gives dy/dxin terms of xonly.

(c)Solve for x as a function of y, find dx/dydirectly, and use the Inverse Function Rule. This method gives 

   dy/dx in terms of yonly.

 

EXAMPLE  2  Given y+ ____= , find dy/dx.

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

 

 

第2.8节 <wbr> <wbr>隐函数This answer can be used to find the slope at any point on the curve. For example, at the point (_____, 1) the slope is

 

 

 

While at the point (_______, 1) the slope is

第2.8节 <wbr> <wbr>隐函数

 

 

 

To get dy/dx in terms of x, we solve the original equation for y using the quadratic formula:

第2.8节 <wbr> <wbr>隐函数 

 

 

 

 

Since _____ , only one solution may occur,

 

第2.8节 <wbr> <wbr>隐函数

 

第2.8节 <wbr> <wbr>隐函数Then                       

 

 

 

The graph of this function is shown in Figure 2.8.1. By substitution we get

第2.8节 <wbr> <wbr>隐函数

 

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

 

 

Figure 2.8.1

      Often one side of an implicit function equation is constant and has derivative zero.

 

EXAMPLE  3 Given - 2y²= 4, y 0, find dy/dx.

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

 

 

 

 

 

Solving the original equation for y, we get

第2.8节 <wbr> <wbr>隐函数       

 

 

 

 

 

 

 Thus dy/dx in terms of x is

第2.8节 <wbr> <wbr>隐函数         

 

 

 

The graph of this function is shown in Figure 2.8.2.

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

Figure 2.8.2

 

Implicit differentiation can even be applied to an equation that does not by itself determine yas a function x. Sometimes extra inequalities must be assumed in order to make ya function of x.

 

EXAMPLE  4  Given

 

(2)

      find dy/dx. This equation does not determine yas a function of x; its graph is the unit circle. Nevertheless we differentiate both sides with respect to xand solve for dy/dx.

第2.8节 <wbr> <wbr>隐函数     

 

 

 

We can conclude that for any system of formulas Swhich contains the Equation 2 and also determines yas a function of x, it is true that

 

第2.8节 <wbr> <wbr>隐函数(3)   

         

 

We can use Equation 3 to find the slope of the line tangent to the unit circle at any point on the circle. The following examples are illustrated in Figure 2.8.3.

 

                

 

 

 

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8.3

 

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

 

The system of formulas

                         x²+ y²= 1,     y 0

 

第2.8节 <wbr> <wbr>隐函数gives us                  

 

 

On the other hand the system

                            x²+ y²= 1,     y 0

 

 

第2.8节 <wbr> <wbr>隐函数gives us

 

   

 

EXAMPLE  5 Find the slope of the line tangent to the curve

(4)                   x5y3+ xy6= y +1

 

at the points (1,1), (1,-1), and (0, -1).

 

The three points are all on the curve, and the first two points have the same xcoordinate, so Equation 4 does not by itself determine yas a function of x. We differentiate with respect to x,

第2.8节 <wbr> <wbr>隐函数

 

 

 

 

 

and then solve for dy/dx,

第2.8节 <wbr> <wbr>隐函数

            

第2.8节 <wbr> <wbr>隐函数 (5)

 

 

 

第2.8节 <wbr> <wbr>隐函数Substituting,   

 

 

 

 

 

 

 

Equation 5 for dy/dxis true of any system Sof formulas which contains

Equation 4 and determines yas a function of x.

 

Here is what generally happens in the method of implicit differentiation. Given an equation

 

(6)          ι(x, y) = σ (x, y)

between two terms which may involve the variables xand y, we differentiate both sides of the equation and obtain

 

第2.8节 <wbr> <wbr>隐函数(7)               

 

 

We then solve Equation 7 to get dy/dxequal to a term which typically involves both xand y. We can conclude that for any system of formulas which contains Equation 6 and determines yas a function of x, Equation 7 is true. Also, Equation 7 can be used to find the slope of the tangent line at any point on the curve ι(x, y) = σ (x, y).

 

PROBLEMS  FOR  SECTION 2.8

In Problems 1-26, find dy/dx by implicit differentiation. The answer may involve both x and y.

xy = 1                               2x²- 3y²= 4 ,   y 0

x³+ y³  = 2                          x³= y 5   

y= 1/(x+y                          y²+3y- 5 = x  

x + y= 1                        8 xy ³  = y + x

9 x²+3xy+y²= 0                      10  x/y+ 3y =2

11  x5= y2- y + 1                       12 ___________

13 ___________                       14  x4+ y4=5

15 xy2- 3x2y + x = 1                   16  2xy-2+ x -2= y

17 y= sin (xy                        18  y=cos (x+y)

19 x= cos2y                          20  x= sin y +cos y

21 y=ex+2                                     22  e y =x2+ y

23 e x =1n                          24   1n y = sin

25 y 2 = 1n (2x + 3y)                    26   1n (cos y) = 2x + 5 

 

In Problems 27-33, find the slope of the line tangent to the given curve at the given point or points.

27   x ²+ xy +y ² = 7 at (1, 2) , and (-1, 3)

28   x - y3= y at (0, 0) , (0, 1), (0, -1), (-6,2)

29   x²- y²= 3 at (2, 1) , (2,-1), (____,0)

30   tan y= x ² at (π/4, 1)

31   2sin² x= 3 cos y at ( π /3, π /3)

32   y+ e y = 1+ 1n x at (1,0)

33   e sin x = 1n y at (0, e)

34    Given the equation x²+ y²= 1, find dy/dxand d²y/dx².

35    Given the equation 2x²- y²= 1, find dy/dxand d²y/dx².

36    Differentiating the equation x²= y²implicitly, we get dy/dx = x/y. This is undefined at the

      point (0, 0). Sketch the graph of the equation to see what happens at the point (0,0).

 

EXTRA  PROBLEMS FOR CHAPTER 2

1 Find the derivative of f(x)= 4x3- 2x + 1

2Find the derivative of f(t)= __________.

3Find the slope of the curve y = x( 2x + 4) at the point (1, 6).

A particle moves according to the equation y= 1/(t ² - 4). Find the velocity as a function of t.

Given y= 1/x³ , express Δy and dy as functions of x and Δx.

6   Given y= 1/____ , express Δy and dy as functions of x and Δx.

  Find d (+ 1/ ).

  Find d (x- 1/x).

  Find the equation of the line tangent to the curve y= 1/(x-2) at the point (1, -1).

10  Find the equation of the line tangent to the curve y= 1+______ at the point (1, 2).

11  Find dy/dx where y= -3 -5x+2.

12  Find dy/dx where y= (2x -5)-2.

13  Find ds/dt where s= (3t +4)(t ²-5).

14  Find ds/dt where s= (4 -6)-1+ (1 -2t) -2.

15  Find du/dv where u= (2 -5v+ 1)/ (v3- 4).

16  Find du/dv where u= (v +(1/v)) / (v- (1/v)).

17  Find dy/dx where y= x1/ 2 + 4x 3/2.

18  find dy/ dx where y= ________.

19  find dy/ dx where y= x 1/3 + x -1/4.

20  find dy/ dx where y=excos2x.

21  find dy/ dx where x= ________, y > 0.

22  find dy/ dx where x= y -1/2 + y-1, y > 0.

23  find dy/ dx where y= _____________.

24  find dy/ dx where y= sina (2+______).

25  find dy/ dx where y= u-1/2, u=5x+4.

26  find dy/ dx where y= u5, u=2 - x3.

27  find the slope dy/ dx of the path of a particle moving so that y= 3t + ____, x = (1/t) - t².

28  find the slope dy/ dx of the path of a particle moving so that y= ____, x = __________.

29  find d²y/ dx²where y= __________

30  find d²y/ dx²where y= x/(x²+ 2).

31  an object moves so that s= _______. Find the velocity v=ds/dt and the acceleration a= d²s/dt².

32  find dy/dx by implicit differentiation when x+ y + 2x²+3y³= 2.

33  find dy/dx by implicit differentiation when 3xy³+ 2x³y= 1.

34  find the slope of the line tangent to the curve ____________.

35 find the derivative of f(x)= |x²-1|

36 find the derivative of function

第2.8节 <wbr> <wbr>隐函数

            

第2.8节 <wbr> <wbr>隐函数

 

37 let f(x) = (x-c)4/3 . Show that f(x)exists for all real xbut that f ′′(c)does not exist.

38 let n be a positive integer and ca real number. Show that there is a function g(x)which has an

     nth derivative at x= c but does not have an (n+1) st derivative at x= c. That is, g(n)(c) exists

     but g(n+1)(c) does not.

39 (a) let u= x, y=u². Show that at x = 0, dy/dxexists even though du/dxdoes not.

(b) let u=x4, y= |u|. Show that at x= 0, dy/dxexists even though dy/dudoes not.

40 suppose g(x) is differentiable at x= c and f(x) = |g(x)|. Show that

(a) f(c) = g(c)if g(c) >0,

(b) f(c) =- g(c)if g(c) >0,

(c) f(c) =0 if g(c)=0 and g(c)=0

(d) f(c) does not exist if g(c)=0 and g(c)0

 

41 Prove by induction that for every positive integer n, n<2n.

42 Prove by induction that the sum of the first n odd positive integers is equal to n2,

       1+3+5+ …+2n-1) = n2

 


0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有