加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

第2.4节  反函数

(2013-07-27 15:30:36)
标签:

it

2.4 INVERSE FUNCTIONS

     Two real functions f and g are called inverse functions if the two equations

                       y=f(x),   x=g(y)

 

Have the same graphs in the (x, y) plane. That is, a point (x, y) is on the curve y=f(x) if, and only if, it is on the curve x=g(y). (in general, the graph of the equation x=g(y) is different from the graph of y=g(x), but is the same as the graph of y=f(x); see Figure 2.4.1.)

 

第2.4节 <wbr> <wbr>反函数      

第2.4节 <wbr> <wbr>反函数                      

 

 

 

 

 

 

 

 

 

 

Figure 2.4.1 inverse functions

 

For example, the function y=x², x ≥ 0, has the inverse function x=_______; the function y=x ³has the inverse function x=______.

 

If we think of f as a black box operating on an input x to produce an output f(x), the inverse function g is a black box operating on the output f(x) to undo the work of f and produce the original input (see Figure 2.4.2).

 

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

Figure 2.4.2

 

Many functions, such as y=x2, do not have inverse functions. In Figure 2.4.3, we see that x is not a function of y because at y=1, x has the two values x=1 and x= -1.

 

Often one can tell whether a function f has an inverse by looking at its graph. If there is a horizontal line y=c which cuts the graph at more than one point, the function f has no inverse. (see figure 2.4.3.) if no horizontal line cuts the graph at more than one point, then f has an inverse function g. Using this rule, we can see in figure 2.4.4 that the functions y=| x | and y = _______________ do not have inverses.

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

 

 

Figure 2.4.3

 

 

第2.4节 <wbr> <wbr>反函数

第2.4节 <wbr> <wbr>反函数Figure  2.4.4                   No inverse functions

 

Table 2.4.1 shows some familiar functions which do have inverses.

第2.4节 <wbr> <wbr>反函数Note that in each case,

 

 

 

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose the (x, y) plane is flipped over about the diagonal line y=x. This will make the x-and y-axes change places, forming the (y,x) plane. If f has an inverse function g, the graph of the function y=f(x) will become the graph of the inverse function x=g(y) in the (y, x) plane, as shown in Figure 2.4.5.

 

The following rule shows that the derivatives of inverse functions are always reciprocals of each other.

 

INVERSE  FUNCTION  RULE

   Suppose f and g are inverse functions, so that the two equations

                    y=f(x)     and    x=g(y)

   have the same graphs. If both derivatives f '(x) and g '(y) exist and are nonzero,

 

第2.4节 <wbr> <wbr>反函数  

then                     

                           

第2.4节 <wbr> <wbr>反函数

that is,    

 

 

PROOF  Let Δx be a nonzero infinitesimal and let Δy be the corresponding change in y. Then Δy is also infinitesimal because f '(x) exists and is nonzero because f(x) has an inverse function. By the rules for standard parts,

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

第2.4节 <wbr> <wbr>反函数Therefore  

第2.4节 <wbr> <wbr>反函数

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

(a)

 

第2.4节 <wbr> <wbr>反函数第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

 

(b)

 

 

 

 

 

 

第2.4节 <wbr> <wbr>反函数第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

 

(c)

第2.4节 <wbr> <wbr>反函数第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

 

(d)

 

 

Figure 2.4.5

 

第2.4节 <wbr> <wbr>反函数The formula

         

               

 

in the Inverse Function Rule is not as trivial as it looks. A more complete statement is

____  computed with x the independent variable

= ________ computed with y the independent variabe.

 

Sometimes it is easier to compute dx/dy than dy/dx, and in such cases the Inverse Function Rule is a useful method.

 

EXAMPLE 1  Find dy/dx where x=1+y -3.

          Before solving the problem we note that

第2.4节 <wbr> <wbr>反函数

  

 

 

     So x and y are inverse functions of each other. We want to find

第2.4节 <wbr> <wbr>反函数

 

 

With x the independent variable. This looks hard, but it is easy to compute

                            第2.4节 <wbr> <wbr>反函数

 

 

With y the independent variable.

 

SOLUTION   ____ = -3y -4,

第2.4节 <wbr> <wbr>反函数                     

 

 

We can write dy/dx in terms of x by substituting,

第2.4节 <wbr> <wbr>反函数                

 

 

EXAMPLE  Find dy/dx where x= y5 + y3 + y. Compute dy/dx at the point(3,1).

       Although we cannot solve the equation explicitly for y as a function of x, we can see from the graph in Figure 2.4.6 that there is an inverse function y=f(x).

 

 

 

第2.4节 <wbr> <wbr>反函数第2.4节 <wbr> <wbr>反函数

 

    

 

 

 

 

 

 

 

 

 

Figure 2.4.6

 

By the Inverse Function Rule,

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

This time we must leave the answer in term of y. At the point (3,1), we substitute 1 for y and get dy/dx = 1/9.

 

For y≥ 0, the function x= y n has the inverse function y= x1/n. In the next theorem, we use the Inverse Function Rule to find a new derivative, that of y= x1/n.

 

THEOREM  1

     If n is a positive integer and

                         y= x1/n.

 

第2.4节 <wbr> <wbr>反函数     then                   

 

Remember that y= x1/n. is defined for all x if n is odd and for  x > 0 if n is even.

The derivative______ is defined for x≠ 0 if n is odd and for x > 0 if n is even.

 

If we are willing to assume that dy/ dx exists, then we can quickly find dy/dx by the Inverse Function Rule.

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

Here is a longer but complete proof which shows that dy/dx exists and computes its value.

 

PROOF  OF  THEOREM 1

              Let x≠ 0 and let Δx be nonzero infinitesimal. We first show that

                        Δy= (x + Δx) 1/n - x1/n

           is a nonzero infinitesimal. Δy ≠ 0 because x+Δ xx. The standard part of

            Δy is

                               st( Δy) = st(( x+ Δ x)1/n) - st(x1/n )

                                    =x1/n - x1/n = 0.

 

Therefore y is nonzero infinitesimal.

 

第2.4节 <wbr> <wbr>反函数Now                  

 

 

 

 

第2.4节 <wbr> <wbr>反函数

Therefore

 

 

第2.4节 <wbr> <wbr>反函数

第2.4节 <wbr> <wbr>反函数

 

 

 

 

 

 

 

 Figure 2.4.7

     

Figure 2.4.7 shows the graphs of y=x1/3 and y=x1/4. At x =0, the curves are vertical and have no slope.

 

EXAMPLE  Find the derivatives of y=x1/n for n=2, 3,4.

第2.4节 <wbr> <wbr>反函数 

 

 

 

 

 

 

Using Theorem 1 we can show that the Power Rule holds when the exponent is any rational number.

 

POWER  RULE  FOR  RATIONAL  EXPONENTS

 

Let y=xr where r is a rational number. Then whenever x>0,

第2.4节 <wbr> <wbr>反函数

                          

 

 

PROOF  Let r=m/n where m and n are integers, n>0. Let

                          u=x 1/n,  y=um.

Then                __________________

 

第2.4节 <wbr> <wbr>反函数and

 

 

 

 

 

EXAMPLE  Find dy/dx where

第2.4节 <wbr> <wbr>反函数

             

 

 

EXAMPLE  Find dy/dx where

                        ______________________.

Let                u=2+x3/2  y= u -1.

 

第2.4节 <wbr> <wbr>反函数Then          

 

 

 

 

 

 

 

PROBLEMS  FOR  SECTION 2.4

In Problems 1-16, find dy/dx.

     x=3y3 + 2y                     2   x = y2 +1   y>0

      x= 1 - 2y2 , y>0                    x=2y5+ y3 + 4

      x= (y2 +2)-1 , y>0                  _______

      y=x 4/3                                     _______

     ____________                   10  y= (2x 1/3+ 1)

11      y= 1+ 2x 1/3 + 4x 2/3+6x                12  y=x -1/4 + 3x -3/4

13      y= (x 5/3 - x) -2                           14   x=y+_____

 

15     x= 3x 1/3 +2y,  y > 0               16      x=1/(1 + ____)

 

 

 

In Problems 17-25, find the inverse function y and its derivative dy/dx as functions of x.

17   x=ky+c,  k≠ 0                     18    x= y3 + 1

19    x=2y2+1, y≥ 0                      20    x=2y2+1, y≤0   

21    x=y4 - 3, y≥ 0                       22    x=y2+3y-1,  y ≥ ____

23    x=y4+y2 +1 , y≥ 0                    24   x = 1/y2 +1/y -1 y > 0  

25   _______________

26  show that no second degree polynomial x= ay2 + by +c has an inverse function.

27  show that x=ay2 + by + c, y-b/2a, has an inverse function. What does its graph look

      like?

28  Prove that a function y=f(x) has an inverse function if and only if whenever x1x2,

      f(x1)__ f(x2)         

 



0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有