加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

第2.3节  有理函数的导数

(2013-07-27 15:21:35)

2.3 DERIVATIVES OF RATIONAL FUNCTIONS

A term of the form

                    a1 x + a0

Where a1, a0are real numbers, is called a linear term in x; if a1 0, it is also called polynomial of degree one in x. A term of the form

                    a2+ a1x + a0,        a2 0

is called a polynomial of degreetwo in x, and, in general, a term of the form

                         anxn+ an-1xn-1+ …a1x+ a0   an 0

is called a polynomial of degreeninx.

 

A rational term in x is any term which is built up from the variable x and real numbers using the operations of addition, multiplication, subtraction, and division. For example every polynomial is a rational term and so are the terms

 

第2.3节 <wbr> <wbr>有理函数的导数                          

 

 

 

A linear function, polynomial function, or rational function is a function which is given by a linear term, polynomial, or rational term, respectively. In this section we shall establish a set of rules which enable us to quickly differentiate any rational function. The rules will also be useful later on in differentiating other functions.

 

THEOREM 1

      The derivative of a linear function is equal to the coefficient of x. That is,

第2.3节 <wbr> <wbr>有理函数的导数                  

 

 

 

 

 

 

 

 

 

PROOF  Let y=bx + c, and let Δx 0 be infinitesimal. Then

                 

第2.3节 <wbr> <wbr>有理函数的导数               

                  

                       

 

 

第2.3节 <wbr> <wbr>有理函数的导数Therefore   

 

Multiplying through by dx, we obtain at once

                        dy = bdx.

 

If in Theorem 1 we put b=1, c=0, we see that the derivative of the identity function f(x)=x is f '(x) = 1; i.e.,

第2.3节 <wbr> <wbr>有理函数的导数                         

 

 

On the other hand, if we put b=0 in Theorem 1 then the term bx+ cis just the constant c, and we find that the derivative of the constant function f(x) =c is f '(x)= 0; i.e.,

                            第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

THEOREM 2  (Sum Rule)

第2.3节 <wbr> <wbr>有理函数的导数 Suppose u and v depend on the independent variable x. Then for any value of x where du/ dx and dv/dx exist,

 

 

 

      In other words, the derivative of the sum is the sum of the derivatives.

 

PROOF  Let y=u+v, and let Δx0 be infinitesimal. Then

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

Taking standard parts,

                    第2.3节 <wbr> <wbr>有理函数的导数

 

 

第2.3节 <wbr> <wbr>有理函数的导数Thus                   

 

 

By using the Sum Rule n-1  times, we see that

 

第2.3节 <wbr> <wbr>有理函数的导数

 

 

THEOREM 3  (Constant  Rule)

第2.3节 <wbr> <wbr>有理函数的导数       Suppose u depends on x, and c is a real number. Then for any value of x where du/dx exists,

                 

 

 

 

PROOF  Let y=cu, and let Δx be infinitesimal. Then

        

 

第2.3节 <wbr> <wbr>有理函数的导数

 

 

            

 

Taking standard parts,

第2.3节 <wbr> <wbr>有理函数的导数                    

 

 

第2.3节 <wbr> <wbr>有理函数的导数Whence              

 

 

 

The Constant Rule shows that in computing derivatives, a constant factor may be moved outside the derivative. It can only be used whenc is a constant. For products of two functions ofx, we have:

 

THEOREM  4 ( Product Rule)

   Suppose u and v depend on x. Then for any value of x where du/dx and dv/dx exist,

第2.3节 <wbr> <wbr>有理函数的导数

   

 

PROOF  Let y=uv, and let Δx0 be infinitesimal.

第2.3节 <wbr> <wbr>有理函数的导数                

 

 

 

 

 

Δu is infinitesimal by the Increment Theorem, whence

第2.3节 <wbr> <wbr>有理函数的导数                     

 

 

 

 

 

 

第2.3节 <wbr> <wbr>有理函数的导数So       

 

 

 

The Constant Rule is really the special case of the Product Rule where v is a constant function of x , v= c. To check this we let v be the constant c and see what the Product Rule gives us:

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

This is the Constant Rule.

 

The Product Rule can also be used to find the derivative of a power of u.

 

THEOREM 5  (Power Rule)

      Let u depend on x and let n be a positive integer. For any value of x where du/dx exists,

第2.3节 <wbr> <wbr>有理函数的导数 

 

 

 

PROOF  To see what is going on we first prove the Power Rule for n = 1,2,3,4.

         n =1:  We have u n = u and u0 = 1, whence 

第2.3节 <wbr> <wbr>有理函数的导数              

 

 

          n =2:  We use the Product Rule,

第2.3节 <wbr> <wbr>有理函数的导数 

 

          n =3:  We write u 3 = u ·u², use the Product Rule again, and then use the result   

                for n = 2.

第2.3节 <wbr> <wbr>有理函数的导数

 

 

        

 

          n =4:  Using the Product Rule and then the result for n = 3,

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

We can continue this process indefinitely and prove the theorem for every positive integer n. To see this , assume that we have proved the theorem for m. That is, assume that

 

第2.3节 <wbr> <wbr>有理函数的导数(1)                    

 

 

   We then show that it is also true for m+1. Using the Product Rule and the Equation 1,

第2.3节 <wbr> <wbr>有理函数的导数  

 

 

 

 

第2.3节 <wbr> <wbr>有理函数的导数Thus         

 

 

 

This shows that the theorem holds for m+1.

We have shown the theorem is true for 1,2,3,4. Set m=4; then the theorem holds for m+1 = 5. Set m= 5; then it holds for m+1 = 6. And so on.

Hence the theorem is true for all positive integers n.

 

In the proof of the Power Ruler, we used the following principle:

 

PRINCIPLE  OF  INDUCTION

 

     Suppose a statement P (n) about an arbitrary integer n is true when n=1.

     Suppose further that for any positive integer m such that P(m) is true, P(m+ 1) is also true. Then the statement P(n) is true of every positive integer n.

 

In the previous proof, P (n) was the Power Rule,

第2.3节 <wbr> <wbr>有理函数的导数              

 

 

The principle of induction can be made plausible in the following way. Let a positive integer n be given. Set m=1; since P (1) is true, P(2) is true. Now set m=2; since P(2) is true, P(3) is true. We continue reasoning in this way for n steps and conclude that P(n) is true.

 

The Power Rule also holds for n=0 because when u≠ 0  , u =1  and d1/dx = 0.

Using the Sum, Constant, and Power rules, we can compute the derivative of a polynomial function very easily. We have

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

and thus

第2.3节 <wbr> <wbr>有理函数的导数第2.3节 <wbr> <wbr>有理函数的导数

EXAMPLE   

 

第2.3节 <wbr> <wbr>有理函数的导数

EXAMPLE    

 

 

Two useful facts can be stated as corollaries.

 

COROLLARY  1

 

          The derivative of a polynomial of degree n> 0 is a polynomial of degree n-1.

          (A nonzero constant is counted as a polynomial of degree zero.)

 

COROLLARY  2

第2.3节 <wbr> <wbr>有理函数的导数If u depends on x, then    

 

Whenever du/dx exists. That is, adding a constant to a function does not change its derivative.

 

In Figure 2.3.1  

         we see that the effect of adding a constant is to move the curve up or down               the y-axis without changing the slope.

 

         For the last two rules in this section we need the formula for the derivative of 1/v.

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.1

 

LEMMA

     Suppose v depends on x. Then for any value of x where v0 and dv/dx exists,

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

PROOF  Let y=1/v and let Δx ≠ 0 be infinitesimal.

 

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

 

 

 

Taking standard parts,

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

 

 

 

 

第2.3节 <wbr> <wbr>有理函数的导数Therefore        

 

 

 

THEOREM   (Quotient Rule)

 

     Suppose u, v depend on x. Then for any value of x where du/dx, dv/dx exist and v0,

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

PROOF  We combine the Product Rule and the formula for d(1/v). Let y= u/v.

         We write y in the form

第2.3节 <wbr> <wbr>有理函数的导数

 

 

第2.3节 <wbr> <wbr>有理函数的导数Then

 

 

 

 

 

 

THEOREM  7 (Power Rule for Negative Exponents)

     Suppose u depends on x and n is a negative integer. Then for any value of x where du/dx exists and u0, d(un)/ dx exists and

第2.3节 <wbr> <wbr>有理函数的导数

 

 

PROOF  Since n is negative, n= -m where m is positive. Let y=un = u-m. Then y= 1/um. By 

         the lemma and the Power Rule,

 

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

 

The Quotient Rule together with the Constant, Sum, Product, and Power Rules make it easy to differentiate any rational function.

 

第2.3节 <wbr> <wbr>有理函数的导数EXAMPLE 3   Find dy when

                       

 

     Introduce the new variable u with the equation

                              u=x² - 3x + 1.

     Then y= 1/u, and du = (2x-3)dx , so

第2.3节 <wbr> <wbr>有理函数的导数                     

 

 

 

EXAMPLE  Let ___________ and find dy.

Let         u=(x4-2) 3, v=5x-1.

第2.3节 <wbr> <wbr>有理函数的导数

Then      

 

 

Also,        du= 3 ·(x4-2) 2 4x 3 dx = 12 (x4 - 2) 2 x3 dx,

            dv=5dx.

 

第2.3节 <wbr> <wbr>有理函数的导数Therefore

 

 

 

 

EXAMPLE  Let y= 1/x3 + 3/x2 + 4/x +5.

第2.3节 <wbr> <wbr>有理函数的导数  

    Then         

 

EXAMPLE  Find dy where

 

第2.3节 <wbr> <wbr>有理函数的导数         

 

 

 

 

This problem can be worked by means of a double substitution. Let

                       第2.3节 <wbr> <wbr>有理函数的导数  

 

 

 

Then            y= .

We find dy, dv and du,

                      dy= 2v dv,

                      dv= -u -2 du,

                      du= (2x+1) dx.

Substituting, we get dy in terms of x and dx,

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

 

EXAMPLE   Assume that u and v depend on x. Given y= (uv)-2, find dy/dx in terms of

       du/dx and dv/ dx.

        Let s =uv, whence y=s-2. We have

                    dy = -2 s -3 ds,

                    ds=udv + vdu.

        Substituting,  dy= -2(uv)-3 (udv+vdu),

第2.3节 <wbr> <wbr>有理函数的导数      

        and        

 

 

 

         The six rules for differentiation which we have proved in this section are so useful that they should be memorized. We list them all together.

 

 

 

 

 

 

 

 

 

          Table 2.3.1   Rules for Differentiation

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

 

 

 

 

 

 

 

 

 

 

An easy way to remember the way the signs are in the Quotient Rule 6 is to put u=1 and use the Power Rule 5 with n= -1,

第2.3节 <wbr> <wbr>有理函数的导数                  

 

 

 

 PROBLEMS  FOR  SECTION 2.3

In Problems 1-42 below, find the derivative.

  f(x) = 3x2 + 5x -4                 _______________

  y=(x+8) 5                               z = (2+3x)4

f(t) = (4-t)3                        g(x) = 3(2-5x)26         

y = (x2 + 5)3                        u = (6+2x2)3

u = (6-2x2)3                             10   w= (1+4x3) -2

11  w= (1 - 4x3) -2                         12   y= 1 + x-1 + x -2 +x -3

13  f(x) = 5(x+1-1/x)                 14    u = (x2 +3x +1)4

15  v= 4 (2x2 - x + 3) -2                   16    y= -(2x + 3 +4x -1) -1

17   ________________               18   ________________

19   ________________               20  s = (2t+1)(3t-2)

21   _______________                22  y= (2x3 +4 )(x 2 - 3x+1)

23   v= (3t2 +1 )(2t - 4)3                         24  z= ( -2x +4 +3x -1)( x+1 - 5x-1)

25   ________________               26  ___________________

27   ________________               28  ____________________

29   ________________               30  ____________________

31   ________________               32  y = 4x-5

33   y=6                            34  y= 2x( 3x-1 ) (4-2x )

35   y= 3(x2 +1 )(2x 2 - 1)(2x+3)         36  y= (4x +3 )-1 + (x - 4)-2

 

 

37   _________________      38   y = (x2 +1 )-1 (3x -1)-2

39   y= [(2x +1 )-1 +3]-1          40   s = [(t 2 +1 )3 +t]-1 

41   y= (2x +1) 3 (x2+1]2         42   _________________

 

In Problems 43-48, assume u and v depend on x and find dy/dx in terms of du/dx and dv/dx.

43  y = u-v                 44     y=u2v

45  y = 4u + v2                  46     y = 1/(u+v)

47   y = 1/uv               48     y=(u+v) (2u - v)

49   Find the line tangent to the curve y=1+x+x² + x³ at the point (1,4).

50   Find the line tangent to the curve y=9x-² at the point (3,1).

51  Consider the parabola y=x² + bx +c. Find values of b and c such that the line y=2x is

      tangent to the parabola at the point x=2, y=4.

52  Show that if u, v, and w are differentiable functions of x and y=ucw, then

第2.3节 <wbr> <wbr>有理函数的导数

 

 

 

53   Use the principle of induction to show that if n is a positive integer, u1,…… un are

       differentiable functions of x, and y=u1 + un, then

第2.3节 <wbr> <wbr>有理函数的导数

 

 

54   Use the principle of induction to prove that for every positive integer n,

第2.3节 <wbr> <wbr>有理函数的导数

 

 

55 Every rational function can be written as a quotient of two polynomials, p(x)/q(x).

     Using this fact, show that the derivative of every rational function is a rational

      Function.



0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有