加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《比的基本性质》教学设计及反思

(2012-06-27 20:07:59)
标签:

教学设计

杂谈

《比的基本性质》教学设计

教学目标

1.理解比的基本性质.

2.正确应用比的基本性质化简比.

3.培养学生的抽象概括能力,渗透转化的数学思想.

教学重点

理解比的基本性质.

教学难点

正确应用比的基本性质化简比.

教学过程

一、复习引入

(一)复习商不变的性质

1.谁能直接说出60÷25的商?

2.你是怎么想的?

3.根据是什么?内容是什么?

(二)复习分数的基本性质

约分:

通分:

根据是什么?内容是什么?

(三)求比值

3∶2  8∶4  7∶21  27∶9

5∶25  16∶4  24∶5  2∶1

二、讲授新课

我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?

(一)比的基本性质

1.把练习3中8∶4和2∶1这两个比找出来

2.教师提问

这两个比有什么共同点吗?(比值都相等)

这两个比有什么不同点吗?(前项和后项都不同)

我们可以说8∶4和2∶1相等吗?

你是怎么想的?

(1)根据比与除法的关系(商不变的性质)

8∶4=8÷4=(8÷4)÷(4÷4)=2÷1=2∶1

(2)根据比与分数的关系(分数基本性质)

8∶4= = = =2∶1

3.学生尝试概括比的基本性质(演示课件“比的基本性质”)

(1)教师板书:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变.

板书课题:比的基本性质

(2)教师强调:“同时”“相同”“0除外”几个关键词

(二)化简比

1.练习引入

学校有8个篮球,12个排球,篮球和排球个数的比是多少?

(1)篮球和排球的个数比是8∶12

(2)篮球和排球的个数比是2∶3

讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?

2.最简单的整数比

最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.

3.化简比

例1.把下面各比化成最简单的整数比.

(1)14∶21=(14÷7)∶(21÷7)=2∶3

讨论:化简整数比的方法是什么?

(2) ∶ =( ×18)∶( ×18)=3∶4

讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?

(3)1.25∶2=(1.25×100)∶(2×100)=125∶200=5∶8

1.25∶2=(1.25×4)∶(2×4)=5∶8(更好)

讨论:怎样把小数比化成最简单的整数比?

4.小结化简比的方法

(1)都化成整数比

(2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.

(三)区别化简比和求比值

1.练习

最简单的整数比

比值

25∶100

4.2∶1.4

1∶

2.讨论:化简比和求比值的区别是什么?

区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.

例如:25∶100化简比的结果是 ,读作1比4,求比值的结果是 ,读作四分之一.

三、巩固练习

(一)化简比

6∶10   ∶  0.3∶0.4

12∶21   ∶2  0.25∶1

(二)选择

1.1千米∶20千米=(    

(1)1∶20    (2)1000∶20    (3)5∶1

2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是(    

(1)20∶21   (2)21∶20      (3)7∶10

(三)思考题

六一班男生人数是女生的1.2倍,男、女生人数的比是(   ),男生和全班人数的比是(   ),女生和全班人数的比是(   ).

四、课堂小结

通过今天的学习,你学到了哪些新知识?什么是比的基本性质?怎样化简比?

五、课后作业

(一)化简下面各比.

16∶20      2∶       4.5∶6      5∶0.35

(二)鞋厂生产的皮鞋,十月份生产双数与九月份生产双数的比是5∶4.十月份生产了2000双,九月份生产了多少双?

 

 

《比的基本性质》教学反思

1.创设情境,让学生产生探究欲望。

苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。所以,应该在课堂教学中创设情境,把问题隐藏在情境之中,形成悬念,引起学生迫不及待地探索和研究。这样不仅能激发学生学习数学的兴趣,同时还能给学生提供自主探索的机会,让学生在自主探索中建构数学知识。如《比的基本性质》一课,传统的教学是:出示一组分数3/4、6/8、9/12,让学生发现3/4:6/8:9/12,接着把分数转化成比3:4=6:8=9:12,归纳出比的基本性质,接着是一层层的巩固练习。这个过程是老师讲,学生听,被动地接受。不说让学生感兴趣,就是对其内容,学生也是一知半解。在应用时,会出现比的前项和后项乘的不是同一个数,甚至会出现前项乘后项的笑话。这种以接受知识为目的教学显然不适应培养时代新人的要求,所以我在设计这节课时,没有采用教材中的例3进行引入,而是让学生先填表格复习比和除法,分数的关系,问学生:通过填这个表你发现厂什么?生:比和分数、除法有很密切的联系,它们很相似:再出示:18÷6=(    )÷2=24÷(    )、15/20=(  )/4=9/(  )=(  )/6。问:这两题是根据什么规律和性质来做的?生:商不变的规律和分数的基本性质。师引导:在除法中有商不变的规律,在分数中有分数的基本性质,那么比有没有类似的性质呢?通过这样的引导,紧紧抓住了学生的心。他们很想弄清楚:比有没有类似商那样的规律和分数那样的性质,使他们产生强烈的探究欲望。

2.猜想验证,让学生感受探究过程。

在激发学生认知需要和探究欲望后,怎样才能让学生的思维卷入知识发现的过程呢?这时教师要起到引导者的作用,引导学生自由思考,作出各种猜想,对猜想提出验证的方法。然后小组合作从不同的角度验证猜想,最后借助实物投影展示学生的研究思路与成果,通过这一系列的探究性的学习活动,让学生感受探究过程。这样不仅为学生自主发展提供了条件,让学生学到科学探究的方法,还培养了学生主动获取知识的能力、团结协作的精神,同时学生在活动中互相启发,产生灵感,使不同层次的学生都得到相应的发展。

如《比的基本性质》一课中,学生提出:比肯定也有类似除法那样的规律和分数那样的性质。老师引导大家讨论怎样验证。结果A组的意见是:我们想用一个比的前项和后项同时乘或除以相同的数,看它的比值变不变B组的意见是:我们想用一个比的前项和后项同时乘一个分数或者一个小数,看它的比值变不变。C组的意见是:我们想把不同的比的前项和后项乘或除以相同的数,看它们的比值变不变。老师肯定了大家的这些想法好,要求同学们分组试试。学生反应十分活跃,小组成员分工合作,你写一个比来验证,我写一个比来试试,有的故意把数写得很大,有的用。来乘……几分钟后,学生们争先恐后地拿出自己的验证结果,同时也提出了验证过程中的疑问。

在整个活动过程中,都充分发挥了学生的潜能,让他们根据白己的需要实验验证,让学生感受知识产生和发展的过程,使学生在这个过程中完成新知的建构。

3.整理归纳,让学生体验成功。

归纳是课堂教学的一个重要组成部分,很多知识都可以让学生自己去归纳。通过归纳,能提高学生的综合概括能力,充分发挥学生的主体作用,发掘学生的聪明才智,提高学生的数学素质。

如在《比的基本性质》一课中,把学生验证的结果一一展示后,老师引导学生比较,比的这个特性是否具有普遍性,比的这个特性怎样归纳呢?有的说:比的前项和后项同时乘相同的数,比值不变。有的说:还应该加同时除以相同的数,比值不变。有的说:这还不完整,应加上0除外……这样有效地让学生通过分析、整理、归纳等科学研究方法得出结论,让学生体验到数学学科的严谨性,从而提高学生的分析概括能力、逻辑推  理能力。得出结沦后,告诉学生:你们太聪明了,发现的数学规律叫比的基本性质、学生感到获得了很大成功,信心十足,不仅增强了学习数学的兴趣,更让学生掌握主动获取数学知识的方法,学到主动参与数学实践的本领。

总之,“比的基本性质”是学生学习“商不变的规律”和“分数的基本性质”后安排的教学内容、由于比和分数、除法的关系,很容易让学生联想到比也应该有类似的性质,这为学生发现问题、产生探究欲望奠定了基础。同时由于上述学习内容的铺垫,为学生自主探究“比的基本性质”这一新的学习任务创造了必要条件。所以,我没有沿袭以往的教学思路及教材束缚,而是立足于学生已有的数学知识与经验,用探究性的学  习方法,让学生在探究过程中建构新知识,解决新问题,获得新发展。

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有