标签:
杂谈 |
不少参考书上认为,在角度制里,三角函数是以角为自变量的函数,对研究三角函数的性质带来不便,引入弧度制后,便能在角的集合与实数集合之间建立一一对应的关系,从而将三角函数的定义域放到实数集或其子集上来。事实果真如此吗?实际上,任何一种角的度量体制,都相应建立了角的集合到实数集合之间的一一对应。这一点并不是弧度所独有的性质。引起这种误解的原因,可能是因为通常用弧度制表示角的时候,总是略去了弧度单位。这使一些人误将表示角的弧度的弧度数值——度量意义的实数与一般意义的实数混同在一起,出现了不恰当的理解。
其实,无论是角度制还是弧度制,都能在角的集合与实数集合之间建立一一对应关系,但采用弧度制更为方便。如用角度制度量角,建立角集与实数集之间的一一对应关系时,需要6O进制换算(例如的角,对应的实数为3O.25),而弧度制为十进制,就不需要换算。此外,使用弧度制可以简化很多公式。比如,扇形弧长计算公式和扇形面积计算公式,若用角度制表示,分别为和,若用弧度制表示,则分别为和。
其实,无论是角度制还是弧度制,都能在角的集合与实数集合之间建立一一对应关系,但采用弧度制更为方便。如用角度制度量角,建立角集与实数集之间的一一对应关系时,需要6O进制换算(例如的角,对应的实数为3O.25),而弧度制为十进制,就不需要换算。此外,使用弧度制可以简化很多公式。比如,扇形弧长计算公式和扇形面积计算公式,若用角度制表示,分别为和,若用弧度制表示,则分别为和。
前一篇:概率是频率的极限吗
后一篇:[转载]学好函数部分