加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

有了角度制为什么还要引入弧度制

(2013-08-31 23:55:50)
标签:

杂谈

不少参考书上认为,在角度制里,三角函数是以角为自变量的函数,对研究三角函数的性质带来不便,引入弧度制后,便能在角的集合与实数集合之间建立一一对应的关系,从而将三角函数的定义域放到实数集或其子集上来。事实果真如此吗?实际上,任何一种角的度量体制,都相应建立了角的集合到实数集合之间的一一对应。这一点并不是弧度所独有的性质。引起这种误解的原因,可能是因为通常用弧度制表示角的时候,总是略去了弧度单位。这使一些人误将表示角的弧度的弧度数值——度量意义的实数与一般意义的实数混同在一起,出现了不恰当的理解。
其实,无论是角度制还是弧度制,都能在角的集合与实数集合之间建立一一对应关系,但采用弧度制更为方便。如用角度制度量角,建立角集与实数集之间的一一对应关系时,需要6O进制换算(例如的角,对应的实数为3O.25),而弧度制为十进制,就不需要换算。此外,使用弧度制可以简化很多公式。比如,扇形弧长计算公式和扇形面积计算公式,若用角度制表示,分别为和,若用弧度制表示,则分别为和。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有