催化反应时,酶的形状一定改变?

标签:
教育酶诱导契合”学说“锁钥”学说 |
分类: 疑难问题的解决 |
疑难问题:浙科版教材上,对酶的作用机理文字中提到的是“锁钥”学说,但图示代表的是“诱导契合”学说。学生对酶的的结构和作用机理方面理解上还是有一定的困难。
一、酶的分子结构和活性部位
酶的分子中存在有许多功能基团例如,-NH2、-COOH、-SH、-OH等,但并不是这些基团都与酶活性有关。一般将与酶活性有关的基团称为酶的必需基团。有些必需基团虽然在一级结构上可能相距很远,但在空间结构上彼此靠近,集中在一起形成具有一定空间结构的区域,该区域与底物相结合并将底物转化为产物,这一区域称为酶的活性中心(active center),对于结合酶来说,辅酶或辅基上的一部分结构往往是活性中心的组成成分。
构成酶活性中心的必需基团可分为两种,与底物结合的必需基团称为结合基团(binding group),促进底物发生化学变化的基团称为催化基团(catalytic group)。活性中心中有的必需基团可同时具有这两方面的功能。还有些必需基团虽然不参加酶的活性中心的组成,但为维持酶活性中心应有的空间构象所必需,这些基团是酶的活性中心以外的必需基团。
酶分子很大,其催化作用往往并不需要整个分子,如用氨基肽酶处理木瓜蛋白酶,使其肽链自N端开始逐渐缩短,当其原有的180个氨基酸残基被水解掉120个后,剩余的短肽仍有水解蛋白质的活性。又如将核糖核酸酶肽链C末端的三肽切断,余下部分也有酶的活性,足见某些酶的催化活性仅与其分子的一小部分有关。
不同的酶有不同的活性中心,故对底物有严格的特异性。
例如,乳酸脱氢酶是具有立体异构特异性的酶,它能催化乳酸脱氢生成丙酮酸的可逆反应:L(+)乳酸通过其不对称碳原子上的-CH3、-COOH及-OH基分别与乳酸脱氢酶活性中心的A、B及C三个功能基团结合,故可受酶催化而转变为丙酮酸。而D(-)乳酸由于-OH、-COOH的空间位置与L(+)乳酸相反,与酶的三个结合基团不能完全配合,故不能与酶结合受其催化。
由此可见,酶的特异性不但决定于酶活性中心的功能基团的性质,而且还决定于底物和活性中心的空间构象,只有那些有一定的化学结构,能与酶的结合基团结合,而且空间构型又完全适应的化合物,才能作为酶的底物。
二、酶作用的机理
1.锁钥学说
生物反应中,酶和底物结合时,底物的结构和酶的活动中心的结构十分吻合,就好像一把钥匙配一把锁一样。酶的这种互补形状,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物,这就是“锁钥”学说,是“诱导契合”学说的前身。
酶对于它所作用的底物有着严格的选择,只能催化一定结构或者一些结构近似的化合物,使这些化合物发生生物化学反应。有的科学家提出,酶和底物结合时,底物的结构和酶的活动中心的结构十分吻合,就好像一把钥匙配一把锁一样。酶的这种互补形状,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物,这就是“锁钥”学说。
2.诱导契合学说
“诱导契合”学说指出,酶并不是事先就以一种与底物互补的形状存在,而是在受到诱导之后才形成互补的形状。底物一旦结合上去,就能诱导酶蛋白的构像发生相应的变化,从而使酶和底物契合而形成酶-底物络合物,并引起底物发生反应。反应结束当产物从酶上脱落下来后,酶的活性中心又恢复了原来的构象。
科学家后来发现,当底物与酶结合时,酶分子上的某些基团常常发生明显的变化。另外,酶常常能够催化同一个生化反应中正逆两个方向的反应。因此,“锁和钥匙学说”把酶的结构看成是固定不变的,这是不符合实际的。于是,有的科学家又提出,酶并不是事先就以一种与底物互补的形状存在,而是在受到诱导之后才形成互补的形状。这种方式如同一只手伸进手套之后,才诱导手套的形状发生变化一样。底物一旦结合上去,就能诱导酶蛋图白的构像发生相应的变化,从而使酶和底物契合而形成酶-底物络合物,这就是1958年D.E.Koshland提出的“诱导契合学说”(induced fit theory):酶分子活性中心的结构原来并非和底物的结构互相吻合,但酶的活性中心是柔软的而非刚性的。当底物与酶相遇时,可诱导酶活性中心的构象发生相应的变化,有关的各个基因达到正确的排列和定向,因而使酶和底物契合而结合成中间络合物,并引起底物发生反应。反应结束当产物从酶上脱落下来后,酶的活性中心又恢复了原来的构象。
后来,科学家对羧肽酶等进行了X射线衍射研究,研究的结果有力地支持了这个学说。