加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

小学数学教学中渗透模型思想心得体会

(2019-12-15 00:19:10)
标签:

教学

小学数学教学中渗透模型思想心得体会

曙光小学  王雪

模型思想就是针对要解决的问题,构造相应的数学模型,通过对数学模型的研究来解决实际问题的一种数学思想方法。(1)模型化思想是“问题解决”的重要形式。(2)模型化思想是培养学生“用数学”的重要途径。(3)模型化思想有利于培养学生的创造能力。模型思想在小学数学教学中的渗透。

数概念模型:每一个数概念就是一个数学模型。自然数、分数、小数都是现实模型的抽象。

1.整数的直观模型:教材中提供多种模型帮助学生经历、感受建模过程,体会模型思想。(1)有结构的实物(十个是一捆,十个一捆是一大捆等等)。(2)数位筒。(3)计数器,在这一阶段孩子对于数位的理解已经有抽象的成分在里面,并含有一定的位值思想。( 4)数位表:在数位表上摆珠子,孩子理解数位表上的珠子的意义比上一个层次更加抽象。(5)半形象、半抽象的“数尺”、数轴。

2.直观模型对于学生理解算理是非常重要的,而我们的教材和教学中对此体现的并不充分,需要教师意识到他的重要性,并且挖掘相应的素材。重要的是逐步学会从多个角度来认识和学习某个数学概念,“数学学习就是将一种表达形式转化为另一种表达形式,其本质保持不变”,感悟并掌握数学学习的方法;培养学生的抽象概括能力,逐步学会将纷繁复杂的现实事物抽象概括为同一“数学结构”,即逐步体验并掌握“数学建模”的思想。

几何图形是模型,每一种图形本身就是一种数学模型。点、线、面、基本的平面图形、立体图形的定义就是生活中几何模型向抽象的数学模型的构建过程。平面图形、立体图形的周长、面积、体积的计算公式就是模型化思想渗透的重要途径。例如:把立体图形的面画在纸上,这就是把生活中的现实模型抽象成数学研究的数学模型的过程。对这些数学模型进行分类,找出他们之间的联系和区别。从而抽象出三边形、四边形、五边形等图形的定义。在分类中进一步建立数学模型。再针对四边形进行二次分类,让学生认识特殊的四边形(平行四边形、长方形、正方形、梯形)和一般的四边形。计算公式是模型、模式与函数是模型、搭配、运算律、数学公式、“份总”关系、统筹问题、鸡兔同笼问题、植树问题、商不变的性质、工程问题、行程问题(行走中的数学、相遇问题)、烙饼问题、田忌赛马等等都是模型,模型无处不在。从模型和模型化思想的角度来进行教学研究,要求我们在平时的教学中

1)要更加关注学生学习的过程。

2)要重视解读课本中呈现的数学模型,知道从模型描述的是对象的哪些特征,反映的是什么样的关系,与其它知识之间的联系是什么,这个知识的背景、发展历史,应用在哪儿等几个方面来解读模型。

3)理解课标倡导的“情境——建模——应用、反思拓展”的意思,并研究实践这样的教学模式,获得宝贵的实践经验。

4)重视建模需要思维方法的训练。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有