邵娟《数学广角—集合》说课稿
(2016-02-15 12:51:44)
标签:
365 |
分类: 教学天地 |
《数学广角—集合》说课稿
商州区第一小学
一、说教材
《数学广角》是教材中新增设的一个内容,它主要是介绍和渗透一些数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。本节课涉及的重叠问题是日常生活中应用比较广泛的数学知识。在本节课前,学生虽然已经学习过分类的思想方法,但集合这部分内容比较抽象。教材例1借助学生熟悉的题材,渗透了集合的有关思想,并利用直观图的方式求出两个小组的总人数。教学要使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。对于三年级学生来说,学习这部分内容,思维力度较强,有一定的挑战性。针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。综上分析本课的教学目标定位为
教学目标:
本节课教学目标在教学设计过程中,以新课程理念为指导,将数学知识和生活有机结合,通过自主探究、操作实践让学生经历数学学习的过程,从而达到感悟知识的目标。基于以上认识,本节课在把握教材意图的基础上,目标定位如下:
1.通过整理图表活动,让学生经历问题解决的数学化过程,获得数学学习体验。
2.使学生理解用直观图(韦恩图)表示“重叠现象”的方法,并利用集合的思想方法培养学生解决简单问题的能力。
3.通过课堂教学活动,让学生体验数学的价值,培养和提高学生的观察能力、思考能力,创新能力、评价说理能力。
教学重、难点:经历集合产生的过程,并学会用集合来解决实际问题。
二、说教学策略
“重叠问题”在日常生活中应用比较广泛具有浓浓的“生活味”。确定教学内容及目标后,该采用怎样的教学方式去达成目标?经过多方面考虑最后确定了我的教学思路。以“认知冲突设疑导入------探究新知感悟韦恩图-----解决问题运用韦恩图”为结构。以“冲突-----思考----交流-----验证”为教法,力求在老师的引导下自主探究,让学生借助直观图体会、理解重叠问题各部分的关系,正确解答重叠现象中的相关数量关系,在探究生活中重叠问题的过程中,利用生活事例让学生感受数学与生活的密切联系体验到数学与生活的联系,激发学习数学的兴趣,感悟到数学的价值,渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
三、说教学过程
(一)巧用对比,初悟“重复”
设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。
(二)善用例题,引入新课
根据学生熟悉情境引入,通过具体情况引发矛盾冲突,提出问题,“在参加人数数据较多的情况下,发现重复的人数”,找准教学的起点,调动学生探索的积极性。
(三)合作探究,体验过程
1.策略分析
让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。
2.探究方法
让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。
3.辩论感悟
4.据图列式,运用集合图
【设计意图】苏霍姆林斯基说了这样一句话,“
5.变式练习,内化集合思想
变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。
(四)巩固应用,建构模型
设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。
(五)全课总结,呼应课题
四、说着重体现的数学思想。
1.培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并顿悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验
2.培养学生思维的严密性严谨性是数学学科的基本特征之一。数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。反思今天的教学过程,我觉得我们也非常注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“喜欢跳绳”和“喜欢踢毽”,而去掉了都参加的部分后是“只喜欢跳绳人数”,“只喜欢踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既喜欢跳绳又喜欢踢毽”让学生明白这是两种活动都喜欢的,课堂上时时注重学生严密的思维。
3.根据实际情况解决问题的能力。具体情境具体分析.最后的题目对这一句话有了很好的诠释。重复的现象,这就需要用到今天学的重复知识来解决。
五、说教学效果
本节课是在找准了学生的认知起点和困惑点的基础上,寻找了一条符合学生学习的有效教学途径。首先从学生喜爱的生活情境出发导入新课,唤醒学生已有的知识经验;在探究的过程中,让学生已有的知识经验为学习新知识服务。教师只有课前知学,然后才能知教。然而怎样去知学?又怎样去知教?是需要课前花足时间去思考的事。