加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《二次函数最值问题》说课稿

(2016-09-19 09:11:41)

   《二次函数最值问题》说课稿

数学组   禄丽佳

各位老师好:

下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析、教学反思六大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

本节课是在学习了二次函数的图像和性质的基础上进一步研究二次函数在闭区间上的最值问题,因为最值是函数非常重要的一个性质,尤其是含参二次函数的最值问题在历年陕西高考中出现,而这个知识既是学生学习的一个重点又是一个难点,所以上好这节课显得尤为重要。本节课使得学生能更深刻地理解函数的单调性、最值,并深刻体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,本节课中渗透的分类讨论思想及数形结合思想,也为学生继续学习高中数学打下坚实的基础。

2.教学的重点和难点

教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。

教学难点含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用

二、教学目标分析

1.知识目标:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。

2.能力目标:通过图像,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。

3.情感目标:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。

三、教学方法分析

根据教学实际,我将本节课设计为数学探究课,所以我给自己定位的角色是教学的组织者、引导者、合作者、在教学过程中充分调动学生的积极性、主动性,让学生成为课堂的主人。在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、学生展示等。

在探究的过程中,借助多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识

四、学情分析

我所代班级的学生是高一新生, 他们在初中已学过二次函数的简单性质与图像,知道二次函数在 《二次函数最值问题》说课稿时在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。

俗话说“授人以鱼,不如授人以渔”,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。让学生真正成为课堂的主人。

五、教学过程分析

(一)复习旧知

回忆二次函数的图像与性质:

1.图像:

2.定义域:

3.单调性:

4.最值:

 

设计意图】复习旧知,引入新课。

 

(二)自主探究

探究1:定轴定区间最值问题

分别在下列范围内求函数f(x)=x2-2x-3的最值:

《二次函数最值问题》说课稿 《二次函数最值问题》说课稿
《二次函数最值问题》说课稿

 


    

 

规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。

 

【设计意图】

通过探究1让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题

 

(三)合作探究(含参二次函数最值求解问题

探究2:动轴定区间最值问题

求函数f(x)=x2-2tx-3, tRx[-2,2]上的最小值。

 

 

【设计意图】

通过探究2让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题

 

变式训练:求函数f(x)=x2-2tx-3x[-2,2] ,tR上的最大值。

 

【设计意图】

     通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。

 

规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,

注意做到不重不漏

 

探究3定轴动区间最值问题

求函数f(x)=x2-2x-3x[t,t+2],tR的最小值。

 

 

【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性从而类比探究2的过程与方法可以制定出解决问题3的方法

 

 

变式训练:求函数f(x)=-x2+2x-3x[t,t+2], tR的最大值.

 

 

 

【设计意图】

     通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。

 

 

规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到不重不漏

 

(四)知识小结

本节课研究了二次函数的三类最值问题:

(1) 定轴定区间最值问题 (2) 动轴定区间最值问题 (3) 定轴动区间最值问题.

核心思想是判断对称轴与区间的相对位置, 应用数形结合、分类讨论思想求出最值。

 

【设计意图】

课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。

(五)结束语

 

数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!

——华罗庚

 

【设计意图】

借助名人名言再次强调数形结合思想的重要性

()课后作业

《二次函数最值问题》说课稿 《二次函数最值问题》说课稿1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。

《二次函数最值问题》说课稿

 


2. 求函数f(x)=x2+2tx+2,tRx[-5,5]上的最值。

3. 求函数f(x)=x2-2x+2x[t,t+1], tR的最小值。

【设计意图】

学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。同时也是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

六、教学反思

 本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生积极性和主动性,及是吸收反馈信息,并通过学生的自评、互评,促进了同学们数学素养的不断提高。但是这节课题目设计的难度有些大,题量又多,这使整堂课显得紧紧张张、忙忙碌碌,学生知识掌握的也不是很扎实。另一方面硬件调试没有到位,影响了上课的效果和速度。在以后的教学中我会吸取教训,争取做好每个环节的工作。

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有