关于数学与语文深度融合的碎片思考
我国著名数学家苏步青曾说:“ 语文学不好,数学就学不好,看似风马牛不相及的事情,其实中间干系重大。”
语文是百科之母,是基础中的基础。在所有学科的学习过程中,就其知识体系而言,都离不开用文字、图表、符号(符号、图形是另一种形式的语言)等来表达,而语言又是思维的物质外壳,文字是知识信息的载体。解数学题时,审题分析需要语文能力中的“阅读”,证明诠释需要语文能力中的“表达”,答题归纳需要语文,搜集记录需要语文……学生在学习数学的过程中,语文能力的障碍会直接桎梏数学的思维,影响数学学习能力的形成。因此,可以这样认为:学好语文是学好数学的前提条件。相当多的数学学习问题其背后是语文学习的问题。
下面试从语言和文字两个方面谈一谈学生语文素养对数学学习效果的干预。
一.语文能力差学生的数学表征
语言是重要的交流工具、学习工具和文化传承工具。思维是看不见摸不着的,人们要感知它,主要通过语言。人们怎么说话,说什么话,都透露着思维的轮廓。小学生的语文素养差,在数学学习中就会出现以下几个方面的表征。
1.被动学习,不敢表达,且语焉不详。
小学生的课堂学习,许多信息是通过听觉获取,再通过大脑的加工处理,形成思维,思维活动要通过语言来表达。如果一个有语言障碍的孩子就不愿和别人互动,即使会也不主动举手。比如口吃的孩子羞于讲话,自卑的孩子不敢讲话,这种被动的学习方式,长此以往就会导致死记硬背、人云亦云,缺乏质疑、申辩的精神,甚至还会形成孤僻心理。如果一个孩子语言表达差,回答问题就表现出词汇贫乏,期期艾艾、拖泥带水、表述无序,别人听得厌烦,自己到头来也不知所云,甚至还会遭到同伴的嘲笑,自尊心受到伤害的同时也影响了上课的情绪。
在学习《用乘法解决问题》时,老师找一个平时不举手的孩子举一个生活中的例子,他说:“我妈——给我——5个鸡蛋——嗯嗯——3个被我吃了——还有那个——我爸又给我2个……说了一大堆,也没抓住问题要求。所以语言表达欠缺的孩子,回答问题往往东鳞西爪、语焉不详。如果一个孩子从入学起就没有培养好说话能力,慢慢就会成为班级的“差生”,就会被边缘化,因而对学习失去兴趣,对一生的成长贻害无穷。
2.思维迟缓,动作不协调。
如果一个孩子的听力差,思维与表达不同步,做数学游戏或是互动时,就会出现动作滞后或是错误。比如对口诀游戏:
生1:我说1,
生2:我说1,
合:一一得一,
生1:我说1
生2:我说2
合:一二得二
……
这样一直对下去,表达差的孩子就会接不上,游戏无法进行下去。又如,在读数和写数中,教师读一个大数,让学生写出数字,有的学生听记能力差,跟不上教师读的节奏,就会胡编乱写,一塌糊涂。
3.不能完全听懂老师的讲授。
数学教师常常需要用学科术语上课,语言发育不完善的孩子会听不懂。比如,教师演示怎样画一个30度的角,(角是学生从一维过渡到二维的转折点,他受到一维定势的负迁移,即画线是都是从一个点开始到另一个点结束)(1)画一条射线,使量角器的中心和射线的端点重合,00刻度线和射线重合(2)在量角器300刻度线的地方点一个点(3)以画出的射线的端点为端点,通过刚画的点,再画出一条射线。他听不懂如中心、端点、00刻度线、300刻度线等术语,受画一维线段从0开始的干扰,画出的图形却是一段弧线(沿着量角器的边缘,从0度描到30度的弧线)。再比如,老师要求学生提一个能用加法解决的生活中的实际问题,有的学生就说:“3+4=5,把加法算式错误等同于加法问题,不明白何谓“生活问题”。
皮亚杰的建构主义四大要素为“情境,协作,会话,意义建构”。“会话”即学习小组成员之间必须通过会话商讨如何完成规定的学习任务的计划,此外,协作过程也是会话过程,在此过程中,每个学习者的思维成果(智慧)为整个学习群体所共享,因此会话是达到意义建构的重要手段之一。语言表达的欠缺的孩子,就无法对知识进行主动建构。
文字是语言的视觉形式,是被符号化了的语言。在数学学习中,学生的语文阅读理解能力直接影响数学学习能力。比如分析、综合、抽象、概括等等。学生的语文理解能力差,一般会出现以下几种情形:
1.对概念、定义、法则理解模糊,难以形成表象。
如循环小数的定义:“一个数的小数部分,一个数字或是几个数字依次不断重复出现,这样的小数,叫循环小数”。由于学生不明白什么是“依次不断”,把2.1345354345543这样的数认为是循环小数,出现认知上的错误。他没有弄清楚虽然数字3、4、5重复出现,但是没有依次重复出现,没有形成循环小数的表象。再比如在《角的初步认识》中,角的表象是一个顶点两条直边,学生往往认为树叶、眼角也是数学意义上的角,忽略了“直边”这一关键词语。
2.混淆命题与逆命题
直角梯形的定义是:“有一个角是直角的梯形叫直角梯形”。而语文能力差的学生认为逆命题是:“梯形只有一个直角”。十进制计数法的定义是:“每相邻两个计数单位之间的进率都是十的计数方法,叫十进制计数法。”逆命题:“所有的计数单位之间的进率都是10。”学生因缺乏对词句的理解或是受语文定向思维干扰(如:“小青是我的同学”和“我的同学是小青”两个命题都成立)而出错。再比如命题:“所有的长方形都是平行四边形”,逆命题:“所有的平行四边形是长方形”,显然不成立,学生因混淆概念的从属关系而产生认知错误。
3.不明白数学语言的意思
数学语言极为严谨、缜密,往往多一个字和少一个字或语序颠倒后会有天壤之别,如“a+b的平方”和“a平方+b平方”截然不同。数学常见的关键词,如:末尾和后面、且、只、是、除尽、整除、多一些、多得多、大约、可能、一定、多几倍、是几倍等表示程度、界定的词语很多。反应在命题上如:“小数的末尾填上0或是去掉0,小数的大小不变”与“小数的后面填上0或是去掉0,小数大小不变”,有的学生因不理解“末尾”与“后面”的意思还有区别吗?而把两个命题混同。再如:对“田字格本有32个,大作业本是田字格本的4倍”与“田字格本有32个,是大作业本的4倍”这两道题,语文阅读能力差的学生区别不开二者的差别,把两道题都用乘法来计算。
4.阅读能力低下导致不理解题意
很多家长都抱怨孩子单独不会做题,家长一读题就会做,不读题就不会做。有的家长说孩子读一遍没什么感觉,让他再读几遍,就会茅塞顿开。这些实例都充分反映了孩子不是不会计算,而是无法理解文字所表达的题意。这在应用题的教学中尤其如此。如:过点a分别画出直线AB的平行线和垂线,学生因不理解“过点a”与“分别”的意思,而只完成了一个要求。再如:“46里面有(
)个10和(
)个1”,学生会填46里面有(4)个10和(46)个1,没有理解是把46分成两部分,包含几个“10”剩余几个“1”。
解决实际问题时,需要在理解的基础上经历分析问题、建立数学模型、写出表达式等过程。
如:“一根4分米长的绳子,对折再对折后,每段绳子有多长”?学生因不理解“对折再对折”的意思,无法画图建立表象,更不会利用数学模型,理不清数量之间的关系。再比如:“爸爸开车去姥姥家,去时用了4小时,每小时行100千米,回来用了5小时,每小时行多少千米”?因语文理解能力低下,所以无法建立“去时的路程等于回来路程”这一模型,文字无法转换成数学式子。
5.思维条理性差
我们发现,一些学生在解决问题时,往往是题最终做对了,但没有按思维顺序去做,东一道算式,西一道算式。有的直接把最后的结果写在最前面,而过程算式写在后面。如“大衣每件675元、裙子每件120元,如果买3件大衣4件裙子,一共需要花多少元”?有些学生这样写算式:
2025+480=2505(元)
675×3=2025(元)
4×120=480(元)
从这一过程,反映出学生思维的条理性差,而条理性差的原因是语文表达能力低下。
数学中的写,主要包括记录、作业、日记等。
在统计调查中需要记录、设计表格,如果学生书写能力差,就没有清晰的过程,让人看不明白。
写作业时,只有将作业纸事先设计,才会出现令人赏心悦目的作业格式,否则书写凌乱,影响学习成绩。
写数学日记时,写作能力强的孩子会逻辑清晰、会井井有条,否则会顾此失彼、离题万里。这是一个三年级孩子的数学日记:我的名字是xxx,我爱足球和跳绳,我外貌长着小小的鼻子,小小的嘴和小小的眼睛。性格tiao皮,
倒 ,我是这样的人考
考不好,语文不爱学,数学和英语爱学我”。这几个磕磕绊绊的字,需破译才能明白作者表达什么,没有一点数学日记的味道。由此可以看到,学生语文学得不好,理解能力就会差,直接影响数学的学习,二者是正比例函数关系。
下面是六年级和四年级两个班语文成绩后五名同学附数学统考成绩表
班级
|
学号
|
姓名
|
语文
|
数学
|
六(2)
|
……
|
……
|
……
|
……
|
六(2)
|
33
|
刘帅
|
74.5
|
59
|
六(2)
|
34
|
韩毅
|
72.5
|
51
|
六(2)
|
35
|
钟金正
|
71.5
|
49
|
六(2)
|
36
|
杨阳
|
70
|
36.5
|
六(2)
|
37
|
郝雨震
|
67.5
|
26
|
班级
|
学号
|
姓名
|
语文
|
数学
|
四(4)
|
……
|
……
|
……
|
……
|
四(4)
|
39
|
赵佳慧
|
78
|
64
|
四(4)
|
40
|
刘宏岩
|
59
|
63
|
四(4)
|
41
|
杨普中
|
56.5
|
50
|
四(4)
|
42
|
高小乐
|
35
|
62
|
四(4)
|
43
|
韩鑫
|
3.5
|
4
|
由此可以说明,语文学不好,数学也会直接受到影响。
二.问题解决的基本思路
给予以上案例分析可见,数学教学问题的背后,很大程度上是语文教学问题。美国语言学家华特说:“生活的外延有多大,语言的外延就有多大。”许多数学教学中困扰的问题,不是数学学习本身的问题,而是语文教学的问题,思维方法的问题。所以,要像新课改所说的那样“打破学科间的森严壁垒”。尽管在小学数学、语文、外语是分科课程,但不能“铁路警察各管一段”,要站在学生综合发展的角度上看待本学科的教学,寻找学科间的相关点,做到相辅相成,互为支撑。一下思路可以借鉴:
1.数学课程的教学中不妨做训练一点语文的功夫,适时进行一点听、说、读、写的训练,把“数学阅读”当作学数学的常规来抓。
2.数学教师备课时,可否添加一些语文知识的要素,比如“概念”的理解方面,学生在哪些方面出现障碍;“法则”的运用过程中,学生在什么地方出现问题;“定义”的内容,让学生思考在需要哪些词语限制等等。
3.语文课上是否可以把数学教材上的段落作为教学的“例子”?如语文特级教师谢宗元,在语文课上用得却是《九章算术》中古代人讲勾股定理(“折竹抵地”)的案例:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”。这样的使用教材,使学生既学了文言文,又建立了两门学科之间的相依相存联系。
4.可否像上海的一些小学那样,为解决小学数学学得累、教得累这个长期困扰教育的问题,干脆晚开数学课程一至二年,待学生识字量、理解力、心智、生活体验达到一定程度时再开设数学课?
5.可否像“文革”前不少地区及今天欧美国家那样,在小学恢复“包班制”授课模式?利用一个老师上两门课的优势,达到二者兼顾,相互提携的作用。
提高学生的语文理解能力,不只是语文领域的教学目标,也是数学领域的重要课题,这一问题已经引教师们的关注,有待于更多有识之士深度研究。
加载中,请稍候......