测度论不仅是概率统计专业
的基础,也是很多现代数学分支的基础,我学习测度论有一段时间了,写这个心得体会和大家交流。
现在市面上流行的测度论书有不少,但我认为适合学习的有以下几本:
1.首推Halmos的 Measure Theory。这本书内容写的极丰富,特别是其纯分析的处理方法引人入胜,一些测度论常用的技巧和测度论中经典的例子也在书中得到了充分的体现。除几何测度论外,该书对基本的测度论知识介绍得很全面。该书习题也是一大特色。此书的习题有易有难,想试下伸手的不妨一试。当然该书也有一些缺点,最显著的就是测度论中重要的方法-单调类方法涉及的比较少,这不能不说是一个遗憾。
2.夏道行的《实变函数函数论与泛函分析》上册。这本书虽然名为实变函数,但实际上是测度论最基本的内容,这些内容虽然在Lebesgue意义下和实变函数论课程的内容多少有些重复,但是就其实质而言,不失为一本很好的测度论与实分析教材
现在市面上流行的测度论书有不少,但我认为适合学习的有以下几本:
1.首推Halmos的 Measure Theory。这本书内容写的极丰富,特别是其纯分析的处理方法引人入胜,一些测度论常用的技巧和测度论中经典的例子也在书中得到了充分的体现。除几何测度论外,该书对基本的测度论知识介绍得很全面。该书习题也是一大特色。此书的习题有易有难,想试下伸手的不妨一试。当然该书也有一些缺点,最显著的就是测度论中重要的方法-单调类方法涉及的比较少,这不能不说是一个遗憾。
2.夏道行的《实变函数函数论与泛函分析》上册。这本书虽然名为实变函数,但实际上是测度论最基本的内容,这些内容虽然在Lebesgue意义下和实变函数论课程的内容多少有些重复,但是就其实质而言,不失为一本很好的测度论与实分析教材