丘成栋 【著名数学家】伊利诺伊大学芝加哥分校数学、统计和计算机科学系教授

标签:
2011年6月接受清华大学邀请成为了清华大学的教授1976年获美国纽约州立大学石溪分校博士学位 |
分类: 杰出科学家 |
http://s10/mw690/004motpzzy6YBOqC7zP39&690
丘成栋
丘成栋教授在数学、应用数学与控制论、计算机科学、金融数学、生物信息等国际前沿研究领域取得了大量原始创新成果,先后发表两百多篇学术论文,其中包括《PNAS》、《Ann. of Math.》、《Invent. Math.》等等这样的国际顶尖数学刊物。 他解决了复几何和奇点理论中的一些国际著名的猜想。是第一个成功地将李代数用来研究代数几何中的超曲面奇点,如今这个代数被同行称为Yau 代数。丘成栋教授及他的合作者还解决了非线性滤波理论中的一个中心的问题(解决了Mitter猜想),完全解决了非线性滤波器的理论问题,这对现代工业,包括国防工业将会有深远的影响。 在生物信息方面,他在DNA及蛋白质2维表示法方面的成果发表在世界顶尖杂志《Nuclei Acid Research 》上。 最近,他开创了natural vector方法来表示基因组和蛋白质。
中文名:丘成栋
国 籍:中国
出生日期:1952年
原 籍:广东省梅州市蕉岭县
简介:
丘成栋,男,原籍广东省梅州市蕉岭县,1952年生于香港,曾任美国伊利诺伊大学芝加哥分校数学、统计和计算机科学系特聘教授,该校信息控制实验室主任,IEEE Fellow,国际顶尖数学专业杂志《Journal of Algebraic Geometry》创始人与主编、《Communications in Information and Systems》创始人与主编。
个人成就:
2011年6月,著名数学家丘成栋(Stephen Yau)教授辞去美国伊利诺伊大学芝加哥分校的永久职位,接受清华大学邀请,全职到清华大学数学科学系工作。他已来到清华大学并办完入职手续,成为了清华大学的一名正式教授。
此后,丘成栋教授将全身心地投入到清华大学数学学科的发展与建设,为清华大学数学学科的教学科研、学科建设、人才队伍建设和国际合作交流等作出贡献。丘成栋教授1976年获美国纽约州立大学石溪分校博士学位,历任美国普林斯顿高等研究院成员(1976-77),哈佛大学Benjamin
Pierce助理教授(1977-80),伊利诺伊大学芝加哥分校数学、统计和计算机科学系副教授(1980-84)、教授(1984-)、特聘教授(2005-)。
他开创了natural vector方法来表示基因组和蛋白质。 如果两个基因组或蛋白质从生物意义上互相接近,那么它们的natural vector具有很近的距离。因此,natural vector方法不仅对基因组和蛋白质提供了快速、唯一的表示,而且成为有力的聚类和预测工具。基于natural vector方法,丘教授计划构造一个基因组数据库和一个蛋白质数据库。与当前的基因组或蛋白质数据库不同,他构造的新的数据库将支持对所有已知的基因组和蛋白质进行同时的比较研究。公共蛋白质数据库记录了当前有超过八百万的蛋白质存在。在如今的方法中,只有natural vector方法可以完成同时比较这个“不可能的任务”。丘教授计划在清华大学组建一个团队来开展这个科研项目。
http://s2/mw690/004motpzzy6YBOumU9j51&690
Proc. Nat. Acad. Sci., U.S.A.:
1. Index theory for the boundaries of
complex analytic varieties, Proc. Nat. Acad. Sci., U.S.A. , 77
(1980), 1248-1249. pdf
2. Criterion for biholomorphic
equivalence of isolated hypersurface singularities, (with John N.
Mather), Proc. Nat. Acad. Sci., U.S.A. 78 (1981), 5946-5947.
pdf
3. Continuous family of
finite-dimensional representations of a solvable Lie algebra
arising from singularities, Proc. Nat. Acad. Sci., U.S.A. 80
(1983),7694-7696. pdf
Annals of Math.:
4. Kohn-Rossi cohomology and its
application to the complex Plateau problem,I, Annals. of Math., 113
(1981) 67-110. pdf
5. Counterexample to boundary
regularity of strongly pseudoconvex CR submanifold: An addendum to
the paper of Harvey-Lawson (with H.S. Luk), Annals of Math.,
148(1998), 1153-1154. pdf
Invent. Math.:
6. The Signature of Milnor Fibers and
Duality Theorem for Strongly Pseudoconvex Manifolds, Invent. Math.,
46(1978), 81-97. pdf
7. Classification of Isolated
Hypersurface Singularities by Their ModuliAlgebras, (with John N.
Mather), Invent. Math., 69 (1982), 243-251. pdf
8. Variation of complex structures
and variation of Lie algebras, (with Craig Seeley), Invent. Math.,
99 (1990), 545-565. pdf
Duke Math. J.:
9. Existence of L2-integrable
holomorphic forms and lower estimates of T^1V, Duke Math. J. 48
(1981), 537-547. pdf
Math. Ann.:
10. Two theorems on higher
dimensional singularities, Math. Ann. 231 (1977), 55 -59.
pdf
11. Equivalence between isolated
hypersurface singularities, (with Max Benson), Math. Ann. 287
(1990), 107-134. pdf
12. Algebraic determination of
isomorphism classes of the moduli algebras of ~E6 singularities
(with Hao Chen, and Craig Seeley), Math. Ann. 318, (2000), 637-666.
pdf
Ann. Sci. Ecole Norm.
Sup.:
13. Holomorphic symmetry, (with
Blaine Lawson), Ann. Sci. Ecole Norm. Sup. 4e series, t. 20(1987),
557-577. pdf
Annali della Scuola Normale Superiore
di Pisa - Classe di Scienze:
14. An estimate of the gap of the
first two eigen-values in the Schrodinger operator,(with I.M.
Singer, Bun Wong and Shing-Tung Yau), Ann. Scuola Norm. Sup., Pisa,
Classe di Scienze, Serie IV, Vol. XII, N.2 (1985), 319-333.
pdf
15. Intersection lattices and the
topological structures of complements of arrangements in CP^2 (with
Tan Jiang), Ann. Scuola Norm. Sup. Pisa Cl.Sci (4), Vol. XXVI,
(1998), 357-381. pdf
Journal of European Mathematical
Society:
16. Rigidity of CR morphisms between
compact strongly pseudoconvex CR manifolds, Journal of European
Mathematical Society, Vol 13,(2011),175-184. pdf
17. On number theoretic conjecture of
positive integral points in 5-dimensional tetrahedron and a sharp
estimation of Dickman-De Bruijn function (with Ke-Pao Lin, Xue Luo,
and Huaiqing Zuo), 33pp. (to appear) Journal of European
Mathematical Society (2013). pdf
J. Differential
Geometry:
18. Durfee conjecture and coordinate
free characterization of homogeneous singularities, (with Yi- Jing
Xu), Journal of Differential Geometry 37 (1993), 375-396.
pdf
19. Moduli and Modular groups of a
class of Calabi-Yau n-dimensional manifolds, n>=3 (with Hao
Chen), Journal of Differential Geometry, 54(2001), 1-12.
pdf
20. Holomorphic De-Rham cohomology of
strongly pseudoconvex CR manifolds with holomorphic S1-action (with
Hing Sun Luk), Journal of Differential Geometry, 63(2003), 155-170.
pdf
21. On a CR family of compact
strongly pseudoconvex CR manifolds, (with X. Huang, H.S. Luk),
Journal of Differential Geometry, Vol. 72, No.3, (2006), 353-379.
pdf
22. Kohn-Rossi cohomology and its
application to the complex plateau problem II (with H.S. Luk),
Journal of Differential Geometry, Vol. 77, No. 1 (2007), 135-148.
pdf
23. Higher order Bergman functions
and explicit construction of moduli space for complete Reinhardt
domains (with Rong DU), Journal of Differential Geometry, 82
(2009), 567-610. pdf
24. Kohn-Rossi cohomology and its
application to the complex plateau problem, III, (with Rong Du), J.
Differential Geometry, Vol. 90, (2012), 251-266.
pdf
Amer. J. Math.:
25. Hypersurface weighted dual graphs
of normal singularities of surfaces, Amer. J. Math. 101 (1979),
761-812. pdf
26. Gorenstein singularities with
geometric genus equal to two, Amer. J. Math. 101 (1979), 813-854.
pdf
27. On strongly elliptic
singularities, Amer. J. Math. 101 (1979), 855-884.
pdf
28. S_n^1 invariant for isolated
n-dimensional singularities and its application to moduli problems,
Amer. J. Math. 104 (1982), 829-841. pdf
29. Various numerical invariants for
isolated singularities, Amer. J. Math. 104 (1982), 1063-1100.
pdf
30. Singularities defined by
sl(2,C)invariant polynomials and solvability of Lie algebras
arising from isolated singularities, Amer. J. Math. 108 (1986),
1215-1240. pdf
31. The multiplicity of isolated
two-dimensional hypersurface singularities:Zariski problem, Amer.
J. Math. 111 (1989), 753-767. pdf
32. A remark on moduli of complex
hypersurface, Amer. J. Math., 113 (1990), 287-292.
pdf
33. Solvability of the Lie algebras
arising from singularities and non-isolatedness of the
singularities defined by the invariant polynomials of sl(2,C),
Amer. J. Math. 113 (1991), 773-778. pdf
34. Classification of gradient space
as sl(2,C)-module I (with J. Sampson and Yung Yu), Amer. J.
Math.114 (1992), 1147-1161. pdf
35. Some remarks on the local moduli
of tangent bundles over complex surfaces (with W.S. Cheung and B.
Wong), Amer. J. Math., 125 (2003), 1029-1035. pdf
Trans. Amer. Math.
Soc.:
36. Normal two-dimensional elliptic
singularities, Trans. Amer. Math. Soc. 254 (1979), 117-134.
pdf
37. On maximally elliptic
singularities, Trans. Amer. Math. Soc. 257 (1980), 269-329.
pdf
Math. Res. Lett.:
38. An upper estimate of integral
points in real simplices with application in singularity theory
(with Letian Zhang), Math. Research Letter, Vol 13, No. 6, (2006),
911-922. pdf [3]