加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

基于数值微分的物理信息神经网络方法在非矩形区域上的应用

(2023-09-08 10:05:12)
1 论文标题:基于数值微分的物理信息神经网络方法在非矩形区域上的应用

2 作者信息:康 豪, 张 羽:西南科技大学数理学院,四川 绵阳

3 出处和链接:康豪, 张羽. 基于数值微分的物理信息神经网络方法在非矩形区域上的应用[J]. 流体动力学, 2023, 11(2): 70-79. https://doi.org/10.12677/IJFD.2023.112007

4 摘要:物理信息神经网络(PINN)是一种新兴的数据驱动的偏微分方程数值求解框架。该类方法不需要进行网格划分,从而避免多余的计算消耗,这使得其对高维问题有更好的拓展性。但传统神经网络技术基于自动微分实现,依赖于大量的训练配点,容易引起梯度爆炸或梯度消失现象,且不能在非矩形区域上直接进行求解。文章简要阐述了基于数值微分的物理信息神经网络的基本原理,使用数值微分替代自动微分以避免使用大量的训练配点,避免梯度爆炸或梯度消失发生。同时,利用区域分解思想对非矩形区域进行划分,使划分后的子区域可以使用PINN直接求解,最终用一个算例验证了该方法的可行性。结果表明,基于数值微分的物理信息神经网络可以求解非矩形区域上的问题。

(投稿咨询请移步汉斯出版社公众号联系小编!)

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有