[转载]玻尔兹曼方程(Boltzmann equation)

标签:
转载 |
原文地址:玻尔兹曼方程(Boltzmann equation) 作者:柴郡短毛猫
引自:http://baike.qiji.cn/Detailed/20588.html">玻尔兹曼方程(Boltzmann
equation)
玻尔兹曼1872年提出的关于粒子分布函数f(v,r,t)随时间演化的方程。 f(v,r,t)随时间t的变化来源于两个方面:粒子的漂移运动和粒子间的碰撞作 用。它们对f的时间变率的贡献是相加的,故有
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%3D%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bd%7D%7D%2B%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" /> (1)
在漂移过程中,粒子的坐标和速度按力学运动方程连续变化,即r→r′=r+vδt,http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Cto%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%27%3D%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%2B%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Cdelta%7Bt%7Dequation)" />,F是 外力。应有f(r′,v′,t+δt)=f(r,v,t), 因此
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bd%7D%7D%3D-%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Br%7D%7D%7D%7D%7D%7D%7D-%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%7D%7D%7Dequation)" /> (2)
碰撞使r→r+dr,v→v+dv范 围内粒子有进有出,而用http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" />表 示其净效果。于是可将式(1)写做
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%2B%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Br%7D%7D%7D%7D%7D%7D%7D%2B%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%7D%7D%7D%3D%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" /> (3)
式(3)称为玻尔兹曼方程,对于定常态,http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%3D%7B0%7Dequation)" />, 式(3)化为
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Br%7D%7D%7D%7D%7D%7D%7D%2B%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%7D%7D%7D%3D%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" /> (4)
式(4)称为定常态玻尔兹曼方程。可以采用弛豫时间近似法处理和讨论碰撞项。若对系统加上一种“力”例如温度梯度或去掉外力,则f偏离平衡分布fe, 分子间碰撞又使f趋于fe,这可视为弛豫过程。以τ(v)表示弛豫时间,可以写出下述关系式
f(r,v,t)-fe(r,v)
=[f(r,v,0)-fe(r,v)]e-t/τ (5)
τ(v)描述分布函数对平衡值的偏离按指数规律衰减的快慢程度,它与粒子平均自由飞行时间的数量级相同。可以看出,碰撞项的作用是削弱漂移的影响,外力场 存在时,它使f趋于稳定值,突然撤掉外力场时,则使系统趋于平衡。
玻尔兹曼1872年提出的关于粒子分布函数f(v,r,t)随时间演化的方程。 f(v,r,t)随时间t的变化来源于两个方面:粒子的漂移运动和粒子间的碰撞作 用。它们对f的时间变率的贡献是相加的,故有
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%3D%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bd%7D%7D%2B%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" /> (1)
在漂移过程中,粒子的坐标和速度按力学运动方程连续变化,即r→r′=r+vδt,http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Cto%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%27%3D%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%2B%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Cdelta%7Bt%7Dequation)" />,F是 外力。应有f(r′,v′,t+δt)=f(r,v,t), 因此
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bd%7D%7D%3D-%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Br%7D%7D%7D%7D%7D%7D%7D-%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%7D%7D%7Dequation)" /> (2)
碰撞使r→r+dr,v→v+dv范 围内粒子有进有出,而用http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" />表 示其净效果。于是可将式(1)写做
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%2B%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Br%7D%7D%7D%7D%7D%7D%7D%2B%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%7D%7D%7D%3D%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" /> (3)
式(3)称为玻尔兹曼方程,对于定常态,http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%3D%7B0%7Dequation)" />, 式(3)化为
http://www.imathas.com/cgi-bin/mimetex.cgi?%5Cdisplaystyle%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Br%7D%7D%7D%7D%7D%7D%7D%2B%7B%5Cfrac%7B%7B%7B%5Cmathbf%7B%7B%7BF%7D%7D%7D%7D%7D%7D%7B%7B%7Bm%7D%7D%7D%7D%5Ccdot%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7B%5Cmathbf%7B%7B%7Bv%7D%7D%7D%7D%7D%7D%7D%3D%7B%5Cleft%28%7B%5Cfrac%7B%7B%5Cpartial%7Bf%7D%7D%7D%7B%7B%5Cpartial%7Bt%7D%7D%7D%7D%5Cright%29%7D_%7B%7Bc%7D%7Dequation)" /> (4)
式(4)称为定常态玻尔兹曼方程。可以采用弛豫时间近似法处理和讨论碰撞项。若对系统加上一种“力”例如温度梯度或去掉外力,则f偏离平衡分布fe, 分子间碰撞又使f趋于fe,这可视为弛豫过程。以τ(v)表示弛豫时间,可以写出下述关系式
f(r,v,t)-fe(r,v)
=[f(r,v,0)-fe(r,v)]e-t/τ (5)
τ(v)描述分布函数对平衡值的偏离按指数规律衰减的快慢程度,它与粒子平均自由飞行时间的数量级相同。可以看出,碰撞项的作用是削弱漂移的影响,外力场 存在时,它使f趋于稳定值,突然撤掉外力场时,则使系统趋于平衡。