加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

用自编码器对数据进行降维

(2018-10-21 14:39:31)
分类: 金融交易、机器学习

https://www.cnblogs.com/dmzhuo/p/5072808.html

 

通过自编码实现数据的降维思想最初是2006年深度学习领域大牛Hinton想出来的,并且发表在顶级期刊Science上,文章的出处在这里:

“reducing the dimensionality of data with neural networks”

该篇经典之作也被视为深度学习的开山之作,自此以后深度学习火了起来,并且逐渐打败传统模式识别领域的浅层学习算法。

 

论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于《SCIENCE 》的论文,也是这篇论文揭开了深度学习的序幕。

 

http://s6/mw690/0047Qf1zzy7ozwKa20Z95&690

图1.预训练,就是训练一系列的RBM,每个RBM只有一层特征检测器。前一个RBM学习的特征作为下一个RBM的输入。预训练完成后把RBM展开得到一个深层自动编码网络,然后把误差的偏导数后向传播,用来对这个网络进行微调。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有