加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

数形结合思想教学案例

(2015-12-10 10:48:46)
标签:

教育

分类: 教学案例

数形结合思想教学案例

案例1:

分析:此题很难用小学算术的知识直接计算,因为它有无穷多个数相加,如果是有限个数相加,用等式的性质进行恒等变换可以计算。从题中数的特点来看,每一项的分子都是1,每一项的分母都是它前一项分母的2倍,或者说第几项的分母就是2的几次方,第n项就是2的n次方。联想到分数的计算可用几何直观图表示,那么现在可构造一个长度或者面积是1的线段或者正方形,不妨构造一个面积是1的正方形,如下图所示。先取它的一半作为二分之一,再取余下一半的一半作为四分之一,如此取下去……当取的次数非常大时,余下部分的面积已经非常小了,用极限的思想来看,当取的次数趋向于无穷大时,余下部分的面积趋向于0,因而,最后取的面积就是1。也就是说,上面算式的得数是1。

案例2:用两个一样的直角三角形和一个等腰直角三角形(腰等于前两个直角三角形的斜边),可以拼一个直角梯形,如下图。如果直角三角形的边长分别是3、4、c, 5、12、c,根据梯形的面积等于3个三角形的面积之和,比较每个直角三角形的两条直角边的平方的和,与斜边的平方之间的大小关系,你能发现什么?如果直角三角形的边长分别是a、b、c时,你又能发现什么?

分析:当直角三角形的边长分别是3、4、c时,梯形的面积是:

(3+4)×(3+4)÷2=24.5, 3个三角形的面积和是:3×4÷2×2+c2÷2=24.5,可得c2=25,即c2=32+42

当直角三角形的边长分别是5、12、c时,梯形的面积是:(5+12)×(5+12)÷2=144.5,

3个三角形的面积和是:5×12÷2×2+ c2÷2=144.5,

可得c2=169, 即c2=52+122

当直角三角形的边长分别是a、b、c时,也就是说直角三角形的三条边长可以取任意不同的值的时候,仍然有梯形的面积等于3个三角形的面积之和。

梯形的面积是:(a+b)×(a+b)÷2,

3个三角形的面积和是:a×b÷2×2+c2÷2=(2ab+c2)÷2。

(a+b)×(a+b)÷2

=[a(a+b)+b(a+b)]÷2

=(a2+b2+2ab)÷2

所以有(a2+b2+2ab)÷2 =(2ab+c2)÷2,可得a2+b2 =c2

根据以上计算结果,由此得出一个重大发现:直角三角形两条直角边的平方的和等于斜边的平方。实际上这是美国第20任总统茄菲尔德发现的证明勾股定理的方法。

这里有一个难点就是(a+b)×(a+b)的计算,这是中学的多项式乘法。在小学学习乘法分配律时已经会计算a(b+c)=ac+bc,那么计算(a+b)×(a+b)可以先把左边的(a+b)看作一个数,分别与右边括号中的a和b相乘,再进行计算。

(a+b)×(a+b)=(a+b)a+(a+b)b=a2+ba+ab+b2= a2+b2+2ab

案例3:把两个形状和大小相同的长方体月饼盒包装成一包,

怎样包装最省包装纸?

分析:此题是小学数学比较典型的通过探索活动发现规律的题目,一般情况下教师会给学生足够的学具进行操作,拼出几种包装方法,再通过计算比较表面积的大小找到最佳答案。现在我们从代数思想出发,不用任何操作和具体数量的计算,一般性地,假设长方体的长、宽、高分别为a、b、c,并且a>b>c(只要给出三个数的大小顺序便可,谁大谁小并不影响用代数方法计算的过程和结论)。   

首先要明确的是,问题所求怎样包装最省包装纸,实际上就是求怎样拼才能使拼成的大长方体的表面积最小。每个长方体有6个面,两个长方体拼成一个大长方体后仍然有6个面,但这6个面的面积是原来长方体的10个面的面积,其中有两个面是原来长方体的面,另4个面分别是原来的相同的两个面拼成的;也就是说,大长方体的表面积已经不是原来两个长方体的12个面的面积直接相加的和了,而是它们的和再减去拼在一起的两个面的面积和。原来两个长方体的12个面的面积和是恒定不变的,因而大长方体的表面积的大小,取决于减去的(拼在一起的)两个面的面积和的大小,减去的两个面的面积和越大,大长方体的表面积就越小。根据已知条件可知,ab>ac>bc,所以把最大的两个侧面贴在一起包装最省包装纸。列成公式为:S=4(ab+bc+ac)-2ab。 

0

阅读 收藏 喜欢 打印举报/Report
前一篇:数形结合思想
后一篇:极限思想
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有