在ABAQUS中的应力和应变
(2015-11-04 10:10:30)1、三维空间中任一点应力有6个分量 ,在ABAQUS中分别对应S11,S22,S33,S12,S13,S23。
在ABAQUS中,一般是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就是X轴向的应力,正值为拉应力,负值为压应力;
S22就是Y轴向的应力,正值为拉应力,负值为压应力;
S33就是Z轴向的应力,正值为拉应力,负值为压应力;
S12就是在YZ平面上,沿Y向的剪力;
S13就是在YZ平面上,沿Z向的剪力;
S23就是在XZ平面上,沿Z向的剪力;
由于剪力的对称性:S12=S21, S13=S31, S23=S32
2、一般情况下,通过该点的任意截面上有正应力及其剪应力作用。但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。称这些无剪应力作用的面为主截面,其上的正应力为主应力,主截面的法线叫主轴,主截面为互相正交。主应力分别以表示,按代数值排列(有正负号)为 。其中 在ABAQUS中分别对应Max. Principal、Mid. Principal、Min. Principal,这三个量在任何坐标系统下都是不变量。
可利用最大主应力判断一些情况:比如混凝土的开裂,若最大主应力(拉应力)大于混凝土的抗拉强度,则认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示出裂缝的开裂方向等。
利用最小主应力,可以查看实体中残余压应力的大小等。
3、弹塑性材料的屈服准则
3.1、Mises屈服准则
其中 为材料的初始屈服应力。
在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。
Mises等效应力的定义为:(牵扯到张量知识)
其中 S为偏应力张量,其表达式为 其中为应力,I为单位矩阵,p为等效压应力(定义如下): , 也就是我们常见的 。
还可以具体表达为:
其中 , , 为偏应力张量(反应塑性变形形状的变化)。
q在ABAQUS中对应 Mises,它有6个分量(随坐标定义的不同而变化)S11,S22,S33,S12,S13,S23
3.2、Trasca屈服准则
主应力间的最大差值=2k
若明确了 ,则有 ,若不明确就需要分别两两求差值,看哪个最大。
ABAQUS中的Trasca等效应力就是“主应力间的最大差值”
3.3 ABAQUS中的Pressure----等效压应力
即为上面提到的p: , 也就是我们常见的 。
3.4 ABAQUS中的Third Invariant---第3应力不变量,定义如下:
其中S参见3.1中的解释。
我们常见的表达式为
在ABAQUS中对应变的部分理解
1、E—总应变;Eij—应变分量
2、EP---主应变;EPn----分为Minimum, intermediate, and maximum principal strains (EP1 EP2 EP3)
3、NE----名义应变;NEP---主名义应变;
4、LE----真应变(或对数应变);LEij---真应变分量;LEP---主真应变;
5、EE—弹性应变;
6、IE---非弹性应变分量;
7、PE---塑性应变分量;
8、PEEQ---等效塑性应变---在塑性分析中若该值〉0,表示材料已经屈服;
描述整个变形过程中塑性应变的累积结果;若单调加载则PEEQ=PEMAG ;
9、PEMAG----塑性应变量(幅值Manitude)---描述变形过程中某一时刻的塑性应变,与加载历史无关;
10、THE---热应变分量;