用R软件进行自变量选择
(2013-11-19 22:15:21)
标签:
r语言多元回归自变量选择 |
分类: R语言学习笔记 |
用drop1函数观察:
> drop1(cz.lm)
Single term deletions
Model:
y ~ x1 + x2 + x3 + x4 + x5 + x6
x1
x2
x3
x4
x5
x6
> drop1(cz.drop1)
Single term deletions
Model:
y ~ x1 + x2 + x3 + x5 + x6
x1
x2
x3
x5
x6
发现去掉x3后AIC减小,故去掉x3继续回归,以此类推,直到AIC无法减小为止,这样就得到了最终的结果。
> drop1(cz.drop3)
Single term deletions
Model:
y ~ x1 + x2 + x5
x1
x2
x5
无论去掉哪个变量,AIC都会增大,故不再去掉变量。最终的结果中包含自变量x1、x2、x5。
三、逐步回归法
逐步回归法是将变量一个一个引入,每引入一个自变量时,对已选入的变量进行逐个检验,当原引入的变量由于后面变量的引入变得不再显著时,要将其剔除。
在R中可以直接用step函数实现逐步回归:
> cz.step<-step(cz.lm)
Start:
y ~ x1 + x2 + x3 + x4 + x5 + x6
- x4
- x3
- x6
- x2
- x1
- x5
Step:
y ~ x1 + x2 + x3 + x5 + x6
- x3
- x6
- x2
- x1
- x5
Step:
y ~ x1 + x2 + x5 + x6
- x6
- x2
- x1
- x5
Step:
y ~ x1 + x2 + x5
- x2
- x1
- x5
最后一步剩下的自变量就是逐步回归选好的自变量。
step函数可以直接得到选元后的模型:
> cz.step
Call:
lm(formula = y ~ x1 + x2 + x5, data = cz)
Coefficients:
(Intercept)
x1 | x2 | x3 | x4 | x5 | x6 | y |
1018.4 | 1607 | 138.2 | 96259 | 2239.1 | 50760 | 1132.26 |
1258.9 | 1769.7 | 143.8 | 97542 | 2619.4 | 39370 | 1146.38 |
1359.4 | 1996.5 | 195.5 | 98705 | 2976.1 | 44530 | 1159.93 |
1545.6 | 2048.4 | 207.1 | 100072 | 3309.1 | 39790 | 1175.79 |
1761.6 | 2162.3 | 220.7 | 101654 | 3637.9 | 33130 | 1212.33 |
1960.8 | 2375.6 | 270.6 | 103008 | 4020.5 | 34710 | 1366.95 |
2295.5 | 2789 | 316.7 | 104357 | 4694.5 | 31890 | 1642.86 |
2541.6 | 3448.7 | 417.9 | 105851 | 5773 | 44370 | 2004.82 |
2763.9 | 3967 | 525.7 | 107507 | 6542 | 47140 | 2122.01 |
3204.3 | 4585.8 | 665.8 | 109300 | 7451.2 | 42090 | 2199.35 |
3831 | 5777.2 | 810 | 111026 | 9360.1 | 50870 | 2357.24 |
4228 | 6484 | 794 | 112704 | 10556.5 | 46990 | 2664.9 |
5017 | 6858 | 859.4 | 114333 | 11365.2 | 38470 | 2937.1 |
5288.6 | 8087.1 | 1015.1 | 115823 | 13145.9 | 55470 | 3149.48 |
5800 | 10284.5 | 1415 | 117171 | 15952.1 | 51330 | 3483.37 |
6882.1 | 14143.8 | 2284.7 | 118517 | 20182.1 | 48830 | 4348.95 |
9457.2 | 19359.6 | 3012.6 | 119850 | 26796 | 55040 | 5218.1 |
11993 | 24718.3 | 3819.6 | 121121 | 33635 | 45821 | 6242.2 |
13844.2 | 29082.6 | 4530.5 | 122389 | 40003.9 | 46989 | 7407.99 |
14211.2 | 32412.1 | 4810.6 | 123626 | 43579.4 | 53429 | 8651.14 |
14599.6 | 33429.8 | 5262 | 124810 | 46405.9 | 50145 | 9875.95 |