佳学基因检测:光化性角化病的基因解码、基因检测
(2024-03-26 10:28:50)
标签:
光化性角化病基因检测基因解码佳学基因遗传病 |
皮肤质量、肤质基因检测导读:
光化性角化病 (AKs) 是表皮角质形成细胞发育不良的病变,是浸润性皮肤鳞状细胞癌 (cSCC) 的前兆,其英文疾病名称为Actinic Keratosis。佳学基因致力于通过基因解码确定在从正常皮肤到光化性角化病皮肤再到侵袭性浸润性皮肤鳞状细胞癌 (cSCC) 皮肤过程的致病基因。这一工作具有一定的挑战性,因为在这一进展的所有阶段都存在大量 UVR 诱导的突变。在基因解码过程中,佳学基因收录了迄今为止最大的 光化性角化病(AK)全外显子组测序研究,并对这些病变进行了突变特征和候选驱动基因分析。在来自免疫抑制和免疫功能正常
基因组驱动基因、CNA 和基因表达谱的数据整合分析
基因解码整合了正常皮肤、AK 和浸润性皮肤鳞状细胞癌 (cSCC) 的现有基因表达谱,以通过 光化性角化病(AK)SMG 在疾病进展中的表达模式来研究 光化性角化病(AK)SMG 的潜在肿瘤抑制或促进作用。皮肤病基因解码使用了五个独立的数据集。数据集中的显著突变基因(SMG)层次结构与观察到的两个主要集群大致一致:一个由在正常皮肤中上调并在 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 中逐渐下调的显著突变基因(SMG)组成,另一个集群显示出相反的模式。
在 光化性角化病(AK)与正常皮肤中,至少有两个数据集( KIF24、KCNK5、EPB41L、INSIG2和ABI3BP)中有 5 个显著突变基因(SMG)显着下调,表明其具有抑癌作用。NOTCH1是唯一显着上调的 SMG。在浸润性皮肤鳞状细胞癌 (cSCC) 与 光化性角化病(AK)中,IMPA1是唯一在至少两个数据集中显着差异表达的 SMG,在浸润性皮肤鳞状细胞癌 (cSCC) 中上调,表明肿瘤启动子作用。
由于浸润性皮肤鳞状细胞癌 (cSCC) 中 TGFβ 信号通路的突变明显多于 AK,基因解码分析了正常皮肤、AK 皮肤和浸润性皮肤鳞状细胞癌 (cSCC) 皮肤中 TGFβ 通路基因的表达模式。数据集显示了两组依赖于进展的 TGFβ 信号失调。一个簇显示正常皮肤中的基因上调,这些基因的下调越来越多,从 光化性角化病(AK)进展到 cSCC,第二个簇具有相反的模式。
皮肤癌发生与恶化的基因解码评估了通过GISTIC 分析确定的显着删除和获得区域的基因表达,该分析揭示了删除区域中的 55 个基因被下调(在至少两个数据集中)和获得区域中的两个基因被上调(至少在两个数据集中)数据集)在 光化性角化病(AK)与正常控制。
光化性角化病基因解码对基因检测和临床治疗的指导作用
光化性角化病基因解码收集分析了迄今为止最大的 光化性角化病(AK)基因组数据集,表明 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 在基因组水平上的 TMB、驱动基因模式和 CNA 方面惊人地相似。每兆碱基 DNA 有 43.5 个突变的 光化性角化病(AK)TMB 比以前报道的要高,这可能是大多数 AKs 来自 IS 个体的结果,免疫抑制导致显着更高的突变率。IC 患者 光化性角化病(AK)的突变负担(TMB)(30.4) 与之前报道的 34.5 相似。
光化性角化病基因解码在大多数 光化性角化病(AK)中检测到预期的 UV 特征 (7a/b)。此外,特征 32 存在于暴露于硫唑嘌呤的患者的所有 光化性角化病(AK)中,进一步表明该药物与浸润性皮肤鳞状细胞癌 (cSCC) 发展的早期阶段有关。匹配的 AK-cSCC 突变谱中的显着正相关也提供了进一步的证据,表明相同的潜在突变过程在 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 中起作用,即使它们来自不同的解剖部位。
光化性角化病基因解码鉴定了 44 个 光化性角化病(AK)SMG,包括许多经典的抑癌基因(TP53、NOTCH1、NOTCH2和FAT1),它们在浸润性皮肤鳞状细胞癌 (cSCC) 中持续发生突变,但重要的是,这些基因也在生理正常的阳光下在低水平和强阳性选择下发生突变-暴露的皮肤。然而,CDKN2A在正常皮肤中没有发生突变,光化性角化病基因解码之前认为它可能在浸润性皮肤鳞状细胞癌 (cSCC) 中具有看门人的作用。CDKN2A未被确定为 SMG,但 9p21.3 的丢失——一个CDKN2A基因位点—被确定为最显着缺失的 CNA,与浸润性皮肤鳞状细胞癌 (cSCC) 相比,AK 中的缺失频率没有显着差异(分别为 54% 和 45%,卡方检验,P = 0.43),表明这种缺失是早期事件,可能在 光化性角化病(AK)发病机制中发挥重要作用。致癌基因PIK3CA在几乎一半的 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 中发生显着改变,频率高于之前的浸润性皮肤鳞状细胞癌 (cSCC) 研究。光化性角化病基因解码还在三个 光化性角化病(AK)中发现了一个激活剪接位点突变的热点。激活PIK3CA中的突变导致磷酸肌醇 3-激酶/蛋白激酶 B/mTOR 通路的激活,这在其他器官的鳞状细胞癌中很常见。
尽管光化性角化病基因解码在HRAS中确定了 16.2% 的 光化性角化病(AK)有改变(所有 CNA、四次丢失和两次增加),但在光化性角化病基因解码的队列中没有检测到单核苷酸变异。这与其他研究一致,在这些研究中,致癌RAS突变在暴露于紫外线的皮肤和 光化性角化病(AK)和/或原位鳞状细胞癌中非常罕见。在光化性角化病基因解码的浸润性皮肤鳞状细胞癌 (cSCC) 队列中,22.5% 的人存在HRAS改变,这被确定为浸润性皮肤鳞状细胞癌 (cSCC) SMG,但预测只有三个浸润性皮肤鳞状细胞癌 (cSCC) 具有激活突变。这提供了进一步的证据,表明人类 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 在生物学上不同于小鼠 7,12-二甲基苯并[a]蒽/12-O-十四烷酰佛波醇-13-乙酸酯模型损伤,其中激活 HRAS 突变很常见。尽管如此,激活RAS突变似乎仍然在浸润性皮肤鳞状细胞癌 (cSCC) 肿瘤子集的浸润性皮肤鳞状细胞癌 (cSCC) 发展中发挥功能性作用,而不是在 AK-cSCC 原位发展中。
HMCN1被确定为 SMG,在 19 支 AK(51%)中被改变。虽然不是确认的癌症基因,但它的作用值得进一步研究,因为它在 cSCC和 AKs中经常发生突变。据推测,它通过其作为细胞外基质蛋白的功能参与癌细胞的侵袭和转移。
光化性角化病基因解码表明 光化性角化病(AK)具有与浸润性皮肤鳞状细胞癌 (cSCC) 相同水平的基因组不稳定性,它们之间有许多共享的 CNA,特别是 9p、13 号染色体和 5q 的丢失。除了一项表明 光化性角化病(AK)比浸润性皮肤鳞状细胞癌 (cSCC) 具有更多 LOH 的早期研究外,光化性角化病基因解码的研究结果与最近发现 光化性角化病(AK)具有相对较少的 CNA 的研究结果相反。然而,大多数研究都同意最常见的染色体不稳定位点,即 9p 丢失——CDKN2A所在的区域——在 光化性角化病(AK)研究中普遍存在。
根据光化性角化病基因解码的显著突变基因(SMG)列表查询已发布的表达数据集,发现与正常皮肤相比,KIF24、KCNK5、EPB41L2和ABI3BP在 光化性角化病(AK)中下调,表明肿瘤抑制作用。在先前的一项研究中,与正常皮肤相比,ABI3BP在浸润性皮肤鳞状细胞癌 (cSCC) 中显着下调,与正常食管相比,鳞状细胞癌食管中的 ABI3BP 也同样下调。它是多种癌症的肿瘤抑制因子,可促进细胞衰老,并在细胞-基质粘附中发挥作用。KCNK5 是一种双孔结构域钾通道,在黑色素瘤表达不足的基因中排名前 1%,在乳腺癌、结直肠癌、肾癌和肝癌中表达不足的基因中排名前 5%,人们对钾通道的作用越来越感兴趣在癌症中。与正常皮肤相比,NOTCH1 mRNA 在 光化性角化病(AK)中显着上调(在两个数据集中),表明肿瘤启动子功能,这与之前在浸润性皮肤鳞状细胞癌 (cSCC) 中的发现形成对比,后者在浸润性皮肤鳞状细胞癌 (cSCC) 发病机制早期失活。光化性角化病基因解码还观察到NOTCH1的早期突变失活在 光化性角化病(AK)中,随后的表达缺失可能促进从 光化性角化病(AK)到浸润性皮肤鳞状细胞癌 (cSCC) 的进展。NOTCH 蛋白在不同的癌症类型和环境中具有相反的肿瘤抑制和启动子作用,这需要进一步研究 光化性角化病(AK)到浸润性皮肤鳞状细胞癌 (cSCC) 的进展。
光化性角化病基因解码已经表明,TGFβ 信号通过其在干细胞中的受体失活而失调是浸润性皮肤鳞状细胞癌 (cSCC) 发病机制中的早期驱动事件,并且可能起到抑癌作用。TGFβ 信号通路基因在浸润性皮肤鳞状细胞癌 (cSCC) 中突变明显更多,并且在表达数据集中也失调。从GSE45216数据集(最大的数据集)中,TGFBR2在从正常皮肤到 光化性角化病(AK)到浸润性皮肤鳞状细胞癌 (cSCC) 的过渡过程中逐渐变得更加低表达,这与之前的研究一致,这些研究已经证明TGFBR2在 TGFβ 肿瘤抑制功能中的关键作用。综上所述,这些发现进一步支持了以下假设:TGFβ 失调是 AK-cSCC 转变的关键步骤。
表观基因组改变也可能在推动 光化性角化病(AK)进展中发挥作用,光化性角化病基因解码在 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 表达谱中观察到的显着差异支持了这一点。最近对 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 的甲基化组进行美化的工作直接解决了这一假设。一组证明了在 光化性角化病(AK)进展为浸润性皮肤鳞状细胞癌 (cSCC) 和转移过程中不同 DNA 甲基化模式的复杂非线性演变,但其他人未能显示 光化性角化病(AK)和浸润性皮肤鳞状细胞癌 (cSCC) 甲基化组有任何差异。迄今为止的表观基因组研究有限,需要进一步研究。
光化性角化病基因解码需要对 光化性角化病(AK)进行具体分级并根据分级进行分析,即 AK-I、-II 和-III。这些 光化性角化病(AK)等级中的每一个都可能具有不同的分子特征。然而,AK 在组织学上经常是异质的,并且可能包括 光化性角化病(AK)I-III 的组合。因此,这些样本中可能包含原位 光化性角化病(AK)III 和/或浸润性皮肤鳞状细胞癌 (cSCC) 的小病灶,这可能会影响结果。样品的激光捕获显微切割可能有助于将这种风险降至最低。
总之,光化性角化病基因解码的数据表明 光化性角化病(AK)已经拥有浸润性皮肤鳞状细胞癌 (cSCC) 中存在的大部分基因组改变。光化性角化病基因解码发现的重大分子改变可能有助于从 光化性角化病(AK)进化为 cSCC,包括关键信号通路的改变,特别是 TGFβ 和免疫系统信号传导;特定基因的突变,包括ABI3BP和IMPA1;和样本内异质性的差异。这些将是未来 光化性角化病(AK)进展的分子发病机制研究的重点。