加载中…
个人资料
陀螺---上帝掷出的骰子
陀螺---上帝掷出的
骰子
  • 博客等级:
  • 博客积分:0
  • 博客访问:143,184
  • 关注人气:127
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

谁最先给出了匀速圆周运动的向心力公式?

(2018-08-31 22:23:24)
标签:

现代物理学

分类: 转载1

谁最先给出了匀速圆周运动的向心力公式? 

已有 6258 次阅读 2018-4-22 10:35 |个人分类:物理学史|系统分类:教学心得

在北京读书的时候,曾有幸听杨振宁讲报告。有次他讲他没有上过高中,高中物理是他自学的。他对书中的匀速圆周运动曾颇感困惑---为什么加速度是在径向方向,而不是切线方向呢?他说等他想明白这点后,高中物理他就懂了。

http://image.sciencenet.cn/home/201804/22/121506edax8b7gobga5dam.gif

相信很多人有过类似的困惑。

这也许是应该的,因为这个问题必须要用到微积分或者至少是微积分思想。

不确定之前是否有人研究过匀速圆周运动相关的加速度问题,不过牛顿是有明确结论的。他专门有个定理,明确表示加速度a正比于速度v的平方,而反比于圆半径r。

http://image.sciencenet.cn/home/201804/22/121557rp7hiuhshu87sz9s.jpg

今天看来,牛顿的推导没那么直接。原因很简单,牛顿虽然发明了微积分,但是没来得及将之发展到今天这样完善的程度。

一个更一般的问题是,如果轨迹不是圆周,而是一条任意曲线,而运动速度也不是恒定,而是任意,那么加速度如何?按照微积分,我们有简单的推导

http://image.sciencenet.cn/home/201804/22/122329mo1kdxbkuy0sx6bi.jpg

可见,这时一般而言加速度有两个分量,一个在曲线的法线方向,一个在曲线的切线方向。有趣的是,这两个分量大小都只依赖于速度v的平方。

这点导致Bonnet的定理,即如果同样一个轨迹可以在力场F1,F2,F3等若干力场中任意一个单独存在时实现,那么这条轨迹也可以在这些力场同时存在时实现。定量上,如果对应力场Fi的速度为vi,那么在这些力场同时存在时,只需要将粒子的速度v改为

http://image.sciencenet.cn/home/201804/22/123105qk90mktjjgg9mkjm.jpg

即可。

这个定理的一个应用是在Euler问题上。Keper问题是个单引力中心问题,其解大家很清楚。如果是两个引力中心呢?可以想象,粒子在这样一个场中的运动可能非常复杂,例如(*表示两个引力中心,即两个太阳)

http://image.sciencenet.cn/home/201804/22/123445xei1w1swdkk6z1md.gif

但是按照Bonnet定理,这个系统至少存在如下图所示的非常规则的轨道(闭合,周期)

http://image.sciencenet.cn/home/201804/22/123557pr36yv5zyy5yypc1.gif

事实上任何以两个中心为焦点的椭圆都可以被实现,因为在其中任何一个引力中心单独存在时,这个椭圆轨道是可以被实现的。

注1:Euler最早研究了双中心问题,而且凭借其天才,说明这个问题跟kepler问题一样是可以通过积分求解的。

注2:Bonnet的定理非常简单,但是颇有启发性,可惜不(哪怕是以习题形式)出现在一般教科书上。

注3:印象中,老杨认为,如果一个人没有跟他一样对匀速圆周运动有过困惑,那么这个人肯定不能学物理。



http://blog.sciencenet.cn/blog-100379-1110270.html 

【关于Bonnet定理:

从双曲几何到Gauss-Bonnet-Chern定理


编者按:在正式转载这篇文章前,需要说明的是:Gauss-Bonnet定理  

                                  https://img-blog.csdn.net/20140511204655046?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQva2FkaW5neGlhb2Rp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

         其中Γ是二维可定向闭曲面, 其边界为∂Γ,K为高斯曲率,χ( Γ) 为曲面 Γ的欧拉示性数。根据SCIBird老师的说法:"高斯曲率K是局部概念,而欧拉示性数χ( Γ)(拓扑不变量)是一个整体性概念,Gauss-Bonnet 公式将局部性与整体性联系起来了,是一个深刻的结果!",其中的Gauss-Bonnet-Chern定理陈省身老师关于高维空间Gauss-Bonnet定理的内蕴证明。关于Gauss-Bonnet定理还有一个尤为重要的形式,就是Atiyah-Singer指标定理了。Atiyah-Singer指标定理的表述极其晦涩难懂,我们只需要知道它是一个很好的整体性定理就可以了。何为整体性定理?本人认为如果将公式本身看做一个“系统”,那么它是由若干要素组成的具有一定新功能的有机整体,各个作为系统子单元的要素一旦按照“特定的规则”组成了系统整体,它就具有独立要素所不具有的性质和功能,形成了新的质的特征,而表现出整体的性质和功能往往与各个要素的性质和功能的简单加和不相等(例如:氢气+氯气->HCl,HCl有区别于氢气和氯气所独有的特性)。

 


    早在Gauss十五岁时,他就构想了一种几何,这种几何中Euclid几何中的第五公设不再成立,他把这个几何成为“星空几何”,或许他预计到这种几何在浩瀚星空中可能实现。

 

    但是我们都知道,真正公开地、系统地提出这个几何的是Lobachevskii(有些英文文献是Lobachevsky,俄国人的名字再翻译成英文时可以有些小差别。)所以这种几何被称作“Lobachevskii几何(Lobachevskian Geometry),也称为双曲几何(Hyperbolic Geometry)。在双曲几何中,三角形内角和不再等于180度。但是我们需要的不仅是这个定性结果,而是要确定内角和与180度的偏差程度,即所 谓的“角盈”,角度的盈余,当然这个盈余时广义上的盈余,如果差别为负数,那么就是负的盈余了:)

 

    描述这个差别的就是著名的(局部)Gauss-Bonnet定理,它将曲面的曲率与角盈直接联系在一起。曲面上多边形的Gauss曲率K在曲面上的积分加上多边形边界曲线的测地曲率k_g在边界上的积分再加上多边形外角和等于2π,如果这个多边形的 边界曲线是测地线,那么测地曲率就为0,这时候测地曲率的积分就为零,计算将大大简化。如果是测地三角形,那么我们马上可以得出三角形内角和公式的推广 。由于内角与外角的互补关系,所以公式将变为:三角形内角和减去π等于Gauss 曲率K在在三角形所围曲面上的积分。于是我们可以知道:

    如果K等于零,那么这刚好就是平面三角形,角盈为零,三角形内角和等于π;

    如果K大于零,那么这就是类似于球面上的三角形,角盈为正,三角形内角和大于π;

    如果K小于零,那么这就是类似于伪球面上的三角形,角盈为负,三角形内角和小于π。

 

    因此Gauss-Bonnet公式即使特殊化两次(第一次先让多边形边界曲线的测地曲率为零,第二次让多边形为三角形)后仍然得出这三个优美结果,直接推广了三角形内角和公式。

 

    而整体的Gauss-Bonnet定理更加优美:紧致定向的二维Riemann流形M(可以粗略地看为是曲面的推广)的Gauss曲率的积分值等于2πχ(M),其中χ(M)是M的 Euler示性数,典型的整体的离散值,而Gauss曲率可以连续取值的局部值。这里,测地曲率的线积分被直接抵消,我们想想复变函数中证明多连通域的Cauchy积分定理时辅助线积分的互相抵消得出得优美结果(实际上我们在证明多连通域的 Grenn定理时就有这个方法了),就可以类推想象这个结果。只是在整体Gauss- Bonnet定理的证明中是用了著名的“三角剖分”把区域分称一个个三角形,抵消线积分(在单连通域的Cauchy积分定理的现代证明中也用到三角剖分),而多连通域的Cauchy积分定理中是将多连通区域划分成一个个单连通区域。我们从这里 也可以看出数学中很多领域的研究有着异曲同工之妙。这样一个公式就巧妙地将起两个迥异的重要概念完美结合。

 

    后来,曲率经过Riemann的推广成为几何中的核心概念,Euler示性数经过Poincare的推广后成为拓扑学中的核心概念,这两个概念在整体微分几何中巧妙结合,而这种巧妙的结合就是由于Chern关于高维复流形(complex manifold)上的Gauss-Bonnet定理的直接的、内蕴的推广。果然应了“龙生龙,凤生凤,老鼠儿子会打洞”这句俗话。伟大的定理,经过伟大的推广,产生更加伟大的学科。

 

    当年Weil和Allendorff用分块切割嵌入高维Euclidean空间中证明推广这个定理时,Nash嵌入定理还未出现,所以前提首先就不成立。在加上一个内蕴的优美结果 却用外蕴的方式来推广,实在很令人不满意。所以Chern一到美国,Weil就把这个 想法告诉Chern,并断定这个定理一定有内蕴的证明方法。Chern很快就完成这个证明了。当时数一数二的数学大师Weyl看了这个结果后惊未神来之笔,赞叹祝贺 。Weil则断定这是几何学里程碑式的伟大工作。

 

    在这里,我们从双曲几何一直说到著名的Gauss-Bonnet-Chern定理,我们还要提 到一个人,那就是伟大的Riemann,正是他创立了狭义的Riemanan几何(Riemann Geometry),然后又把这个结果纳入他创立的极度深邃的“广义Riemanan几何 (Riemannian Geometry,分清楚与Riemann Geometry的区别,它们形式上差别是 “ian”,实质上的差别却是“常曲率”与“任意曲率”的差别),推广了Gauss 的曲面内蕴几何学,定义了抽象Riemann度量,仅仅在2维情形就直接摆脱了Euclidean空间的嵌入研究,使曲面的研究不再等价于3维Euclidean空间中的曲面 研究。著名的Poincare上半平面上定义了Poincare度量,它无法在3维Euclidean 空间中实现嵌入,Poincare度量就是Riemann度量的一种。

 

    正如Milnor的所言,双曲几何在Riemann几何出现前只是没手没脚的躯干而已。Riemann让这个躯干成为正常人体。

 

    Riemanan之后,Beltrami使伪球面上实现了局部的双曲几何,Klein在开单位圆( 不包括圆周)上实现了整体的双曲几何,而Poincare在上半平面(不包括实数轴 )上实现了整体双曲几何。容易证明,单位圆和上半平面存在共形映射,而单位 圆周和实数轴作为两个域的边界,也一一对应。在单位圆上赋予Poincare度量(Poincare metric),就可以计算出它的截面曲率为-1,证明双曲几何的空间曲 率小于零。正如我们所知道的,双曲几何从Poincare去世后发展至今,最牛的人 物是Thurston,Fields奖获得者。此外,这个学科的发展很缓慢,足见其艰难,也足见Poincare之伟大。

 

    大名鼎鼎的Schwarzschild早在26岁时就考虑过宇宙如果为弯曲的话,曲率半径应 该为多少,他在19世纪末时就说:“本世纪有人在Euclid几何之外提出non- Euclid几何,其主要实例就是球面空间和伪球面空间。我们如果知道可能具有有限曲率半径的球面和伪球面几何中世界是什么样子,我们会感到惊讶。如果有这种可能,你会感到自己处在几何学的仙境里;而且如此美妙的仙境会不会变为现实,我们也无法知道。”(摘录自Chandrasekhar于1986年的Schwarzschild讲座中所引用文字,杨建邺、王晓明等译)

    他还应用当时的天文学数据估算了3维空间曲率半径的极限,认为双曲空间与球形空间的曲率半径的下限分别为64光年和1600光年。

    我们当然知道,在1900年的时候,天文测距技术还是不完善的,实际上Einstein 提出静态宇宙学模型时(1917年)对宇宙大小的认识还是很模糊的,甚至于Hubble提出膨胀宇宙学说时,由于造父变星光度的分析有错误,使得宇宙的观测也相应出现严重失误。因此,在Schwarzschild那个时代,对宇宙有着如此的梦幻与计算,实在是非常了不起的。他的思想已经深入到双曲几何和椭圆几何中去了。

 

    说个题外话,现代微分几何学家处理三维问题和四维问题时面对的困难相差时很大的,因为三维空间Ricci曲率如果为零,则Riemann截面曲率就为零,而四维空间没有这个性质。但是在Schwarzschild那时,他肯定无法考虑到这个,所以如果 他牛到直接考虑四维时空,也照样提刀上阵:)

 

    我们也知道,Lobachevskii在提出双曲几何时就已经想象到它或许会在宇宙中实现,他说:“同时,不能不重视Laplace的见解:我们所见到的星星饿银河只属于天体的一部分,就像微弱的、若隐若现的斑点,类似于我们在猎户星座、摩羯星座及其他星座中所看到的一样。于是,且不说在想象中空间可以无限地延伸,自然界本身向我们显示的距离,甚至同我们的地球到恒星的距离相比,后者也因微小而可以忽略。此外,不能进而断言,假定直线的度量不依赖于角——这一假设,许多几何学家想采纳它作为毋需证明的严格的真理——可能在我们过渡到可见世界的极限之前,就会发现它有可以觉察到的错误。”

 

    英国的Clifford实际上也设想过这个问题,但是到了Schwarzschild时,这个梦想被继续深化了。这样我们就可以理解为什么Einstein一搞出广义相对论,Schwarzschild就给出第一个精确解,人家早就是老手了,学起这些新的几何学也 时易如反掌,再加上解偏微分方程的特殊能力,使得Einstein对这个结果赞赏不已,比起6年后对待的Friedman,可谓无比真诚了。

 

    我们理当也多说几句关于椭圆几何的问题,因为它和双曲几何(Hyperbolic Geometry)一样是non-Euclidean Geometry,但是考虑到从Euclidean Geometry 到Hyperbolic Geometry的实质性跨越,双曲几何到椭圆几何的跨越几乎为零,只是平行发展而已,我并没有贬低Riemann的意思,椭圆几何只是上面说的“狭义的Riemanan几何”,仅仅凭借广义的Riemann几何学,Riemann的伟大已经不再需要这个安慰奖了,何况他还是其他多项无上的光荣:Riemann面,Riemann假设等等。

 

    写道篇末,想起了一个巧合:Gauss和Schwarzschild都担任过Gotinggen天 文台台长。一个因为数学而天文,一个因为天文而数学,妙。

https://blog.csdn.net/kadingxiaodi/article/details/25560169

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有