《实际问题与二次函数》教学反思
(2014-04-19 17:24:35)
标签:
数学阅读教育 |
分类: 教育 |
《实际问题与二次函数》教学反思
这节课在学习了二次函数的基本形式和二次函数的图象、顶点坐标、对称轴等性质的基础上来学习用二次函数解决实际问题。学生对前面所学的知识已经掌握,但综合应用能力较差。因此在教学设计时将本节知识分两课时进行,这节是第一课时,从课堂上学生的反应和课堂练习可知本节课教学效果较好,大部分学生能准确分析题意并能写出函数关系式,培养了学生理论联系实际的能力和分析问题的能力;但在确定自变量的取值范围和函数的最值时只有少数学习较好的学生能准确解答,这说明稍复杂的数量关系分析是学生的难点,单一的知识应用能准确找到解决途径,而综合起来应用学生就有些茫然,无法确定切入点。
本节课在两个地方学生出现疑难:一是分析题意时理不清价格和数量之间的对应关系;二是不能准确判断自变量的取值范围和函数的最值。对于这些难点我是这样处理的:
首先在回顾了前面的知识点后提出实际问题:某商品现在的售价为每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,如何定价才能使利润最大?在分析题意时学生能分清涨价、降价所对应的商品销量,但一小部分学生依教材上的解题思路不能理解售价和销量之间的对应关系。对于这个难点我是这样处理的:设每涨x个1元,则每件售价为(60+x)元,少卖出10x件,共卖出(300-10x)件;每降价x个1元,则每件售价为(60-x)元,多卖出20x件,共卖出(300+x)件。重点强调“x个”!虽然在分析中只多了个“每(涨或降)…个1元”,但就这几个字却能帮一部分学生理清关系和思路,如涨3元8元的问题,则售价为(60+3x)元或(60+8x)元,这样学生从最小单元开始分析,逐层递进,很容易理清思路找准关系。这个关系弄清了,函数关系自然水到渠成就写出来了。
其次是由函数解析式确定最大值,而确定最值时必须考虑实际问题中自变量的取值范围。在这个问题中x首先是非负数,同时(300-10x)也是非负数,所以x大于等于0且小于等于30。结合函数解析式y=-10x2+100x+6000可知该函数图象开口向下,有最大值。由顶点坐标公式可以计算出当x=5时(在自变量的取值范围内),y有最大值,且此时y=6250。强调此时不仅要考虑顶点坐标公式,还要结合题意看这个x值是否在其取值范围内。x值确定后将其代入就可求出最值y的大小。
从学生课堂练习来看,大部分学生会用这个分析方法解决相应问题。虽然这节课没能按课时安排学习探究二的问题,但学生能掌握商品涨(降)价与售价、利润间这类问题的分析并会列函数关系也算是一点点收获了。