加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《植树问题(两端都栽)》

(2017-12-11 18:01:53)
标签:

教育

植树问题

教学内容:人教版五年级上册第七单元数学广角——植树问题 例1及相关习题

教学目标:

过程与方法:引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。

知识与技能目标:

 1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

 2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

3)、培养学生的合作意识,养成良好的交流习惯。

过程与方法目标:

1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

 2)、通过画线段初步形成培养探索解决问题有效方法的能力。

情感态度与价值观目标:

感受数学在生活中的广泛应用。激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重点:发现并理解植树问题中间隔数和棵规律。

教学难点:运用“植树问题”的解题思想解决生活中的实际问题。

教学准备:课件、直尺、学习纸。

教学过程

一、谈话导入,直观认识“间隔”

1、为了我们的财产安全、人身安全,许多房屋建筑都安装了防护栏。

请看图片,这就是一间办公室外的防护栏,仔细观察,你发现了什么?

生:每两个栏杆之间,都有一定的距离。

师:这一段距离,在数学生我们管它叫“间隔”。

2、通过实物,对“间隔”进行再认识

出示图片:学生队伍、彩旗、马路两旁树木等。

师:请同学们,看大屏幕,在这些图片中,有我们刚才说的间隔吗?你能指出每幅图中的间隔吗?

师:其实,间隔不只是距离,还可以是一段时间。例如我们每天在学校都是上课40分钟,课间休息10分钟,每两节课之间的间隔就是10分钟。

3、引出问题

在我们生活中,间隔随处可见。物体的个数与间隔数之间都存在一定的规律。这节课我们就一起来研究和解决一些简单的与间隔有关的问题——植树问题。(板书课题)
设计意图:以学生熟悉的防护栏为素材,帮助学生认识“间隔”然后借助实物,让学生认识更多的间隔,加深对“间隔”的理解和认识。

二、教学新知

教学例1

看,小朋友们在干什么?

出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端都栽),一共要栽多少棵树?

1、读题,理解题目

从题目中你了解到哪些数学信息?

1) “每隔5米栽一棵”是什么意思?

(是指每两棵树之间的距离都是5米,每两棵树之间的距离也就是我们刚刚知道的间隔长度,所以,也可以说“两棵树之间的间隔是5米。”)

2)“两端都栽”是什么意思?“一边”是什么意思?

实物展示。拿出手中的尺子指出“两端”和“一边”

2、学生试做,猜一猜

师:一共要栽多少棵树?请你猜一猜,算一算

预设生1100÷5=20(棵)

想:每隔5米种1棵,100里面有205米,所以要栽20棵树

预设生2100÷5+1=21(棵)

想:100除以5等于20个间隔,棵树比间隔多1,所以要栽21棵。

3、画图验证

师:两位学生谁的答案正确呢?从算式上看我们很难确定,谁能给大家提供一个好办法来帮助我们判断呢?

生:画线段图。

小精灵:可是,100米太长了,怎么办呢?

生:我们可以先画短点,找一找规律。

师:这真是一个好主意,知道把复杂的问题简单化,你真棒!那我们就先选取其中的20米,来画一画吧!

师:先画线段表示20米,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,大家开始在学习纸上栽树吧!

师:提问:现在20米小路,通过画图,很容易知道能 5  )棵,有(4  )个间隔。你还想把小路看成几米?

设计意图:让学生体会到复杂问题可以从简单问题入手的解题策略,并通过“画线段图”的方法,为学生发现规律自主探究做好准备。

4、小组合作探究

:现在请同学们以小组为单位,组长分配小路长度,先画图表示,然后思考:能种几棵树,有几个间隔?画完以后填好表格。

5、学生交流汇报,教师根据汇报填表

路长(米)

间隔长

间隔数

棵树

 

5

 

 

 

5

 

 

 

5

 

 

 

5

 

 

......

 

 

 

6、发现规律

师:通过刚才的小组研究,再根据小组内得到的数据,说说你有什么发现?

学生汇报规律:

1:棵数比间隔数多1。所以棵树=间隔数+1

教师引导理解规律

画图:一棵树一个间隔,再一棵树一个间隔,最后多出一棵树。

《植树问题(两端都栽)》 

设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的过程,学到了解决问题的方法。

7、确定方法

是:学到这里,你知道刚刚两位学生的答案,谁的正确

生:我知道XX的答案生正确的。100÷5+1=21(棵)

师:那你能说一说这个算式100÷5=20 求得是什么吗

生:100÷5=20 20间隔数,棵数比间隔数多1,所以再+1 100÷5+1=21(棵)

师:谁能够根据例1的算式,为大家总结一个专门解决植树问题中两端都栽这种情况的式子吗?棵数=全长÷间隔长+1   

设计意图:让学生经历猜测—试验—验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。

师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:8个间隔种几棵树?85个间隔种几棵树?16棵树之间有几个间隔?78棵树之间有几个间隔?

【设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。】

8、我们刚刚解决例1的方法,叫化繁为简,它是解决复杂问题的一个好方法,你学会了吗?今天的植树问题(两端都栽)的解决方法你掌握了吗?

师:只用嘴说“会”,我可不相信,我要考一考你们,你们敢接受我的挑战吗?

三、巩固练习

1、请你选一选:
1)一排礼炮共有29个间隔(两端都摆),一共()门礼炮。28  29   30

2)一列共有25张凳子(两端都放),有()个间隔?25+1=26  25   25-1=24

2107页 做一做 第1

在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一盏,一共要安装多少盏路?

师:这道题里没有植树呀,能用我们今天学的方法解决吗?

师:读题,审题,你有哪些地方想提醒大家?

使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

3109页 练习二十四  2

5路公共汽车行驶路线全长12km。相邻两站之间的路程都是1km。一共设有多少个车站?

4109页练习二十四 4

园林工人沿一条笔直的公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

认真审题,这一题与例题有什么不同?

引导学生推导  全长=间隔×(棵树—1

四、总结

刚才我们研究了植树问题,其实,植树问题并不只是与植树有关,生活中有很多问题和植树问题有关,例如设立车站、立电线杆、安装路灯等。数学上,我们把这类问题统称为“植树问题”。

通过今天的学习,你有什么收获? 学生复述公式。

五、作业布置

109页练习二十四   13

板书设计    

植树问题

两端都栽:   棵树=全长÷间隔长+1    

全长=间隔×(棵树—1

1:100÷5=20(段)     20+1=21(棵)

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有